Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

canon
16-30
16canon
Purpose Compute canonical state-space realizations
Syntax csys = canon(sys,'type')
[csys,T] = canon(sys,'type')
Description canon computes a canonical state-space model for the continuous or discrete
LTI system
sys. Two types of canonical forms are supported.
Modal Form
csys = canon(sys,'modal') returns a realization csys in modal form, that is,
where the real eigenvalues appear on the diagonal of the matrix and the
complex conjugate eigenvalues appear in 2-by-2 blocks on the diagonal of .
For a system with eigenvalues , the modal matrix is of the
form
Companion Form
csys = canon(sys,'companion') produces a companion realization of sys
where the characteristic polynomial of the system appears explicitly in the
rightmost column of the matrix. For a system with characteristic polynomial
the corresponding companion matrix is
A
A
λ
1
σ
j
ωλ
2
,±,()
A
λ
1
000
0
σω
0
0
ω
–
σ
0
000
λ
2
A
ps
()
s
n
a
1
s
n 1–
... a
n 1–
sa
n
++++=
A
A
00....0a
n
–
100..0a
n 1–
–
010. : :
:0..::
0..10a
2
–
0....01a
1
–
=