Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

balreal
16-20
The function balreal computes a particular similarity transformation
such that
See [1,2] for details on the algorithm.
Limitations The LTI model sys must be stable. In addition, controllability and
observability are required for state-space models.
See Also gram Controllability and observability grammians
minreal Minimal realizations
modred Model order reduction
References [1]Laub,A.J.,M.T.Heath,C.C.Paige,andR.C.Ward,“ComputationofSystem
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms,” IEEE Trans. Automatic Control, AC-32 (1987),
pp. 115–122.
[2] Moore, B., “Principal Component Analysis in Linear Systems:
Controllability, Observability, and Model Reduction,” IEEE Transactions on
Automatic Control, AC-26 (1981), pp. 17–31.
[3] Laub, A.J., “Computation of Balancing Transformations,” Proc. ACC,San
Francisco, Vol.1, paper FA8-E, 1980.
W
c
TW
c
T
T
= , W
o
T
T–
W
o
T
1–
=
T
W
c
W
o
diag g
()
==