Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

2 LTI Models
2-16
In addition to the A, B, C,andD matrices, the display of state-space models
includes state names, input names, and output names. Default names (here,
x1, x2, u1,andy1) are displayed whenever you leave these unspecified. See
“LTI Properties” on page 2-25 for more information on how to specify state,
input, or output names.
Descriptor State-Space Models
Descriptor state-space (DSS) models are a generalization of the standard
state-space models discussed above. They are of the form
The Control System Toolbox supports only descriptor systems with a
nonsingular matrix. While such models have an equivalent explicit form
it is often desirable to work with the descriptor form when the matrix is
poorly conditioned with respect to inversion.
The function
dss is the counterpart of ss for descriptor state-space models.
Specifically,
sys = dss(A,B,C,D,E)
creates a continuous-time DSS model with matrix data A,B,C,D,E.For
example, consider the dynamical model
withvector ofangular velocities. Iftheinertiamatrix is poorly conditioned
with respect to inversion, you can specify this system as a descriptor model by
sys = dss(–F,eye(n),eye(n),0,J) % n = length of vector
E
xd
td
------
Ax Bu+=
yCxDu+=
E
xd
td
------
E
1–
A
()
xE
1–
B
()
u+=
yCxDu+=
E
J
d
ω
dt
--------
F
ω
+ T=
y
ω
=
ω J
ω