Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Creating LTI Models
2-13
1 Defining the variable s as a ZPK model
s = zpk('s')
2 Entering the transfer function as a rational expression in s.
For example, once
s is defined with zpk,
H = –2s/((s – 2)*(s^2 + 2*s + 2));
returns the same ZPK model as
h = zpk([0], [2 –1–i –1+i ], –2);
Note You need only define the ZPK variable s once. All subsequent rational
expressions of
s will be ZPK models, unless you convert the variable s to TF.
See “Model Conversion” on page 2-40 for more information on conversion to
other model types.
MIMO Zero-Pole-Gain Models
Just as with TF models, you can also specify a MIMO ZPK model by
concatenation of its SISO entries (see “Model Interconnection Functions” on
page 3-16).
You can also use the command
zpk to specify MIMO ZPK models. The syntax
to create a p-by-m MIMO zero-pole-gain model using
zpk is
H = zpk(Z,P,K)
where
•
Z is the p-by-m cell array of zeros (Z{i,j} = zeros of )
•
P is the p-by-m cell array of poles (P{i,j} = poles of )
•
K is the p-by-m matrix of gains (K(i,j) = gain of )
For example, typing
Z = {[],–5;[1–i 1+i] []};
P = {0,[–1 –1];[1 2 3],[]};
H
ij
s
()
H
ij
s
()
H
ij
s
()