Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Kalman Filtering
10-57
EstErrCov
EstErrCov =
0.2722
Time-Varying Kalman Filter
The time-varying Kalman filter is a generalization of the steady-state filter for
time-varying systems or LTI systems with nonstationary noise covariance.
Given the plant state and measurement equations
the time-varying Kalman filter is given by the recursions
Measurement update
Time update
with and as defined on page 10-50, and in the following.
xn 1+
[]
Ax n
[]
Bu n
[]
Gw n
[]
++=
y
v
n
[]
Cx n
[]
vn
[]
+=
x
ˆ
nn
[]
x
ˆ
nn 1–
[]
Mn
[]
y
v
n
[]
Cx
ˆ
nn 1–
[]
–
()
+=
Mn
[]
Pnn 1–
[]
C
T
Rn
[]
CP n n 1–
[]
C
T
+
()
1–
=
Pnn
[]
IMn
[]
C–
()
Pnn 1–
[]
=
x
ˆ
n 1 n+
[]
Ax
ˆ
nn
[]
Bu n
[]
+=
Pn 1 n+
[]
AP n n
[]
A
T
GQ n
[]
G
T
+=
x
ˆ
nn 1–
[]
x
ˆ
nn
[]
Qn
[]
Ewn
[]
wn
[]
T
()
=
Rn
[]
Evn
[]
vn
[]
T
()
=
Pnn[]Exn[] xnn[]–{}xn[] xnn[]–{}
T
()=
Pnn 1–[]Exn[] xnn 1–[]–{}xn[] xnn 1–[]–{}
T
()=