Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Kalman Filtering
10-51
In these equations:
• is the estimate of given past measurements up to
• is the updated estimate based on the last measurement
Given the current estimate , the time update predicts the state value at
the next sample (one-step-ahead predictor). The measurement update
then adjusts this prediction based on the new measurement . The
correction term is a function of the innovation, that is, the discrepancy.
between the measured and predicted values of . The innovation gain
is chosen to minimize the steady-state covariance of the estimation error
given the noise covariances
You can combine the time and measurement update equations into one
state-space model (the Kalman filter).
This filter generates an optimal estimate of . Note that the filter
state is .
Steady-State Design
You can design the steady-state Kalman filter described above with the
function
kalman. First specify the plant model with the process noise.
This is done by
% Note: set sample time to -1 to mark model as discrete
Plant = ss(A,[B B],C,0,-1,'inputname',{'u' 'w'},...
x
ˆ
nn 1–
[]
xn
[]
y
v
n 1–
[]
x
ˆ
nn
[]
y
v
n
[]
x
ˆ
nn
[]
n 1+
y
v
n 1+
[]
y
v
n 1+
[]
Cx
ˆ
n 1+ n
[]
– Cxn 1+
[]
x
ˆ
n 1+ n
[]
–
()
=
yn 1+
[]
M
Ewn
[]
wn
[]
T
()
Q ,= Evn
[]
vn
[]
T
()
R=
x
ˆ
n 1 n+
[]
AI MC–
()
x
ˆ
nn 1–
[]
BAM
un
[]
y
v
n
[]
+=
y
ˆ
nn
[]
CI MC–
()
x
ˆ
nn 1–
[]
CM y
v
n
[]
+=
y
ˆ
nn
[]
yn
[]
x
ˆ
nn 1–
[]
xn 1+
[]
Ax n
[]
Bu n
[]
Bw n
[]
++= (state equation)
yn
[]
Cx n
[]
= (measurement equation)