Specifications
Table Of Contents
- Introduction
- LTI Models
- Operations on LTI Models
- Model Analysis Tools
- Arrays of LTI Models
- Customization
- Setting Toolbox Preferences
- Setting Tool Preferences
- Customizing Response Plot Properties
- Design Case Studies
- Reliable Computations
- GUI Reference
- SISO Design Tool Reference
- Menu Bar
- File
- Import
- Export
- Toolbox Preferences
- Print to Figure
- Close
- Edit
- Undo and Redo
- Root Locus and Bode Diagrams
- SISO Tool Preferences
- View
- Root Locus and Bode Diagrams
- System Data
- Closed Loop Poles
- Design History
- Tools
- Loop Responses
- Continuous/Discrete Conversions
- Draw a Simulink Diagram
- Compensator
- Format
- Edit
- Store
- Retrieve
- Clear
- Window
- Help
- Tool Bar
- Current Compensator
- Feedback Structure
- Root Locus Right-Click Menus
- Bode Diagram Right-Click Menus
- Status Panel
- Menu Bar
- LTI Viewer Reference
- Right-Click Menus for Response Plots
- Function Reference
- Functions by Category
- acker
- allmargin
- append
- augstate
- balreal
- bode
- bodemag
- c2d
- canon
- care
- chgunits
- connect
- covar
- ctrb
- ctrbf
- d2c
- d2d
- damp
- dare
- dcgain
- delay2z
- dlqr
- dlyap
- drss
- dsort
- dss
- dssdata
- esort
- estim
- evalfr
- feedback
- filt
- frd
- frdata
- freqresp
- gensig
- get
- gram
- hasdelay
- impulse
- initial
- interp
- inv
- isct, isdt
- isempty
- isproper
- issiso
- kalman
- kalmd
- lft
- lqgreg
- lqr
- lqrd
- lqry
- lsim
- ltimodels
- ltiprops
- ltiview
- lyap
- margin
- minreal
- modred
- ndims
- ngrid
- nichols
- norm
- nyquist
- obsv
- obsvf
- ord2
- pade
- parallel
- place
- pole
- pzmap
- reg
- reshape
- rlocus
- rss
- series
- set
- sgrid
- sigma
- sisotool
- size
- sminreal
- ss
- ss2ss
- ssbal
- ssdata
- stack
- step
- tf
- tfdata
- totaldelay
- zero
- zgrid
- zpk
- zpkdata
- Index

Building LTI Arrays
5-17
Notice that this result is very different from the single MIMO LTI model
returned by
H = [H11,H12;H21,H22];
Building LTI Arrays Using tf, zpk, ss, and frd
You can also build LTI arrays using the tf, zpk, ss,andfrd constructors. You
do this by using multidimensional arrays in the input arguments for these
functions.
Specifying Arrays of TF models tf
For TF models, use
sys = tf(num,den)
where
•Both
num and den are multidimensional cell arrays the same size as sys (see
“size and ndims” on page 4-9).
•
sys(i,j,n1,...,nK) is the (i, j) entry of the transfer matrix for the model
located in the position of the array.
•
num(i,j,n1,...,nK) isarowvectorrepresentingthenumeratorpolynomial
of
sys(i,j,n1,...,nK).
•
den(i,j,n1,...,nK) is a row vector representing denominator polynomial
of
sys(i,j,n1,...,nK).
See “MIMO Transfer Function Models” on page 2-10 for related information on
the specification of single TF models.
Specifying Arrays of ZPK Models Using zpk
For ZPK models, use
sys = zpk(zeros,poles,gains)
where
•Both
zeros and poles are multidimensional cell arrays whose cell entries
containthevectorsofzerosandpolesforeachI/Opairofeachmodelinthe
LTI array.
n
1
…
n
K
,,()