Specifications
Table Of Contents
- EXPOSURE TO RF RADIATION
- MCC 545B MRC-565 DIFFERENCES
- 1 INTRODUCTION
- 2 NETWORKS
- 3 DESCRIPTION
- 4 INSTALLATION
- 4.1 Cable Connections
- 4.1.1 DC Power
- 4.1.2 VHF Antenna
- 4.1.3 GPS Antenna
- 4.1.4 I/O Port
- 4.1.5 GNSS Ethernet
- 4.1.6 Radio Ethernet Port
- 4.2 Power-Up Sequence
- 4.3 Description of Critical Device Parameters for a LOS Network
- 4.3.1 Device
- 4.3.2 Role
- 4.3.3 Radio ID Number
- 4.3.4 Frequency and Modulation Parameters
- 4.3.5 Select Site Name
- 4.4 Enter Script Files
- 4.5 RF TEST
- 5 OPERATIONS
- 5.1 Getting Started
- 5.1.1 Command Entry and Editing
- 5.1.2 HELP Command
- 5.1.3 System Time and Date
- 5.1.4 Factory Default Parameters
- 5.2 Configuring the MRC-565 Manually
- 5.2.1 Setting the Radio ID
- 5.2.2 Device Type
- 5.2.3 Setting the Operating Role
- 5.2.4 Setting the Power Mode
- 5.2.5 Selecting Network Parameters
- 5.3 Local Area Network Configuration
- 5.3.1 I/O Configuration Commands
- 5.3.2 Scheduling MRC-565 Events
- 5.3.3 Setting Timeout Duration
- 5.3.4 Defining Data Relays
- 5.3.5 Scaling A/D Readings
- 5.3.6 Selecting the Burst Monitor
- 5.3.7 Controlling the Hourly Statistics Report
- 5.3.9 Power Turn On
- 5.3.10 Saving and Restoring the Configuration
- 5.4 Sending and Receiving Messages
- 5.4.1 Entering and Deleting Messages
- 5.4.2 Editing Messages
- 5.4.3 Sending Messages
- 5.4.4 Sending Remote Commands
- 5.4.5 Sending Canned Messages
- 5.4.6 Receiving Messages
- 5.4.7 Examining Message Status
- 5.4.8 Examining and Revising Message Queues
- 5.5 Sensor I/O Port
- 5.6 Data Loggers Interface
- 5.7 CR10X Data Logger
- 5.7.5 Update Interval
- 5.7.6 Transmission Order
- 5.7.8 Time of Day
- 5.7.9 Time Tagging
- 5.7.10 Memory Management
- 5.7.11 Data Scaling
- 5.7.12 Modem Enable
- 5.7.13 Setting/Reading CR10X Internal Registers
- 5.7.14 Entering CR10X Security Codes
- 5.7.15 Downloading a CR10X .DLD Program
- 5.7.16 Replacing an MRC-565 to an Operational CR10X
- 5.7.17 Replaying Data from a CR10X
- 5.8 CR1000 Data Logger
- 5.8.1 CR1000 Driver Configuration Command Summary:
- 5.8.2 Acquire Mode:
- 5.8.3 Data Retrieval Pointer Initialization
- 5.8.4 Data Retrieval Hole Collection
- 5.8.5 Update Interval
- 5.8.6 Transmission Order
- 5.8.7 Group ID Assignment
- 5.8.8 Time of Day
- 5.8.9 Time Tagging
- 5.8.10 Memory Management
- 5.8.11 Data Scaling
- 5.8.12 Modem Enable
- 5.8.13 Reading CR1000 Internal Pointers and Error Statistics
- 5.8.14 Displaying Status Table Data
- 5.8.15 Displaying and Setting Public Table Data
- 5.8.16 Downloading a Program
- 5.9 SDI-12 Sensors
- 5.9.1 Data Collection
- 5.9.2 Setup
- 5.9.3 Periodic Data Collection
- 5.9.4 Data Logging
- 5.9.5 User Interface
- 5.9.6 MRC-565 Commands
- 5.9.7 SDI, CMD, COMMAND TEXT
- 5.9.8 SDI, TRACE, {OFF/ON}
- 5.9.9 SDI-12 Command/Response List
- 5.9.10 Serial Port Command and Response Diagrams
- 5.10 Generic Data Logger
- 5.10.1 Typical Report Formats
- 5.10.2 Setup and Configuration
- 5.10.3 Viewing the generic device driver setup
- 5.10.4 AUTO Format
- 5.10.5 MULTI-LINE Format
- 5.11 Event Programming
- 6 THEORY OF OPERATION
- 6.1 CMU (MRC-56500300-04)
- 6.1.1 Receiver Analog Front End
- 6.1.2 Digital Receiver Components
- 6.1.3 Digital Transmitter Components
- 6.1.4 Discrete Digital Output, Relay Junction and Analog Input
- 6.1.5 Power Amp Interface
- 6.2 Microprocessor
- 6.2.1 Overview
- 6.2.2 Cold Fire Processor
- 6.2.3 Data Input/Output
- 6.2.4 Coldfire Microprocessor Peripherals and Serial Configuration
- 6.2.5 Power Fail Detection/Protection
- 6.2.6 Voltage Regulators
- 6.2.6.1 Input Switching Regulator
- 6.2.6.2 CF Switching Regulator
- A three output switching regulator is used to generate the three voltages that power the Cold Fire Processor and its peripheral devices. The three voltage are:
- 3.3V Powers CF54455 I/O, CPLD, RS232 interfaces, Flash Memory, Ethernet Controller
- 6.2.6.3 DSP Switching Regulator
- A three output switching regulator is used to generate the three voltages that power all circuitry associated with the Receiver and Exciter circuitry. The three voltages are:
- 3.6V Powers FPGA and DSP I/O, Rx Clock synthesizer, RF Pre Amps, TCXO, and QDUC circuit.
- 2.0V Powers the ADC circuit, the FPGA Core (1.2V), and the DSP Core (1.6V)
- 6.2.6.4 5 V Regulator
- 6.3 Power Amplifier (MRC-56500301-10)
- 6.4 Internal GNSS daughter board (optional)
- 7 Maintenance
- APPENDIX A: COMMANDS
- MESSAGE COMMANDS
- MAINTENANCE COMMANDS
- BOOT
- DATA LOGGER COMMANDS
- CR10X COMMANDS
- COMMAND
- PARAMETERS
- CR10X,GROUP,source
- CR10X,RESET
- CR10X,SCALE,type
- CR10X,SIGNATURE
- CR10X,STAT
- CR10X,TIME,source
- CR1000
- CR1000,ACQMODE,{CURRENT,ALL,LAST,N}
- CR1000,SETPTR,MM/DD/YY,HH:MM
- CR1000,INTERVAL,{off,n}
- CR1000,GROUP,{CR1000}
- CR1000,TIME,{CR1000}
- CR1000,MAXQ,nnn
- CR1000,SCALE,{CR1000,INT}
- CR1000,PUBLIC
- CR10XTD,STAT
- CR10XTD,RESET
- CR10XTD,SECURITY,xxxx,yyyy,zzzz
- CUSTID,nnnnn
- 1 – 4095
- A-Z, 0-9, -
- A-Z, 0-9, -
- A-Z, 0-9, -
- Parameter
- BOOT
- MAINTENANCE COMMANDS
- STATUS COMMANDS
- STATION CONFIGURATION COMMANDS
- APPENDIX B: FACTORY DEFAULTS
- The following is a list of MRC 565 Parameters that are installed after typing:
- To obtain a list of parameters settings in SCRIPT format for the MRC 565 type:
- APPENDIX C: EVENT PROGRAMMING
- APPENDIX D: INSTALLATION DETAILS
MAINTENANCE
Page 117 MRC-565 Packet Data Radio Operations & Maintenance
QDUC PLL lock condition is monitored by the OS. The OS will abort or inhibit transmission if
the QDUC PLL is unlocked.
The NCO output samples are applied to sine and cosine digital lookup tables. The sine and
cosine signals are applied to a complex digital modulator operating at 480 Msps, also inside the
QDUC. The modulator output is applied to a high speed DAC and then exits the QDUC as an
approximate 1 mW modulated RF carrier. A 7-pole LC low pass filter then removes the 400+
MHz alias frequency output and other minor QDUC intermodulation products before the signal
is routed to the RFPA.
Details of the carrier modulation process are provided below.
6.1.3.2 RF Power Amplifiers
The low level modulated carrier is passed to the RFPA circuit board where it is amplified to
10W, 25W, 50W or 100W by three RF amplifiers in a chain depending on operator selection.
One inter-stage low pass filter and final output low pass filter as well as frequency selective
components not shown remove harmonics created by the nonlinearity of the RF amplifiers.
Automatic output power level control (ALC) is provided by a feedback loop as shown on the
RFPA diagram. This keeps output power stable over a range of power supply voltages and
operating temperatures.
6.1.3.3 Modulation Process
NRZ user data enters the MRC-565 via a serial, USB or Ethernet port. The OS packetizes it and
adds preamble, synch, protocol headers and checksums. Packets will vary in length from
approximately 20 ms to 200 ms. The transmitter can emit either constant envelope (CE) BPSK or
CE GMSK.
6.1.3.3.1 CF and DSP TX Character processing
The CF assembles all of the header, payload and CRCC bytes of the message packet. The CF
(including the CPLD glue logic) also orchestrates the TX start up and shut off control and
sequencing. There is one message packet per transmission in half duplex mode. The CF uses the
DSP HPI to transfer the TX character bytes to the DSP TX message FIFO buffer.
The DSP is responsible for modulation pre-coding, band limiting and part of the sample rate
interpolation process. Packet Characters are block processed, one byte, i.e., 8 bits at a time. The
packet bits are sent serially, one bit per symbol so the bytes are first disassembled into individual
bits.
The DSP converts the message data bytes first to bipolar bits and then concatenates bits from
consecutive bytes into a continuous stream. Each modulation type is further described below.
6.1.3.3.2 Constant Envelope Differentially Encoded BPSK Modulation
Differentially encoded BPSK is confined to a circular phase trajectory so it has fixed amplitude,
i.e., no amplitude modulation (AM). Each new bit is converted to a bipolar value dependent on
the previous bit. If the result is positive (negative), the phase of the carrier will be advanced
(retarded) 180 degrees during the bit period. If the result is 0, the carrier phase is not affected. A