Specifications
Table Of Contents
- EXPOSURE TO RF RADIATION
- MCC 545B MRC-565 DIFFERENCES
- 1 INTRODUCTION
- 2 NETWORKS
- 3 DESCRIPTION
- 4 INSTALLATION
- 4.1 Cable Connections
- 4.1.1 DC Power
- 4.1.2 VHF Antenna
- 4.1.3 GPS Antenna
- 4.1.4 I/O Port
- 4.1.5 GNSS Ethernet
- 4.1.6 Radio Ethernet Port
- 4.2 Power-Up Sequence
- 4.3 Description of Critical Device Parameters for a LOS Network
- 4.3.1 Device
- 4.3.2 Role
- 4.3.3 Radio ID Number
- 4.3.4 Frequency and Modulation Parameters
- 4.3.5 Select Site Name
- 4.4 Enter Script Files
- 4.5 RF TEST
- 5 OPERATIONS
- 5.1 Getting Started
- 5.1.1 Command Entry and Editing
- 5.1.2 HELP Command
- 5.1.3 System Time and Date
- 5.1.4 Factory Default Parameters
- 5.2 Configuring the MRC-565 Manually
- 5.2.1 Setting the Radio ID
- 5.2.2 Device Type
- 5.2.3 Setting the Operating Role
- 5.2.4 Setting the Power Mode
- 5.2.5 Selecting Network Parameters
- 5.3 Local Area Network Configuration
- 5.3.1 I/O Configuration Commands
- 5.3.2 Scheduling MRC-565 Events
- 5.3.3 Setting Timeout Duration
- 5.3.4 Defining Data Relays
- 5.3.5 Scaling A/D Readings
- 5.3.6 Selecting the Burst Monitor
- 5.3.7 Controlling the Hourly Statistics Report
- 5.3.9 Power Turn On
- 5.3.10 Saving and Restoring the Configuration
- 5.4 Sending and Receiving Messages
- 5.4.1 Entering and Deleting Messages
- 5.4.2 Editing Messages
- 5.4.3 Sending Messages
- 5.4.4 Sending Remote Commands
- 5.4.5 Sending Canned Messages
- 5.4.6 Receiving Messages
- 5.4.7 Examining Message Status
- 5.4.8 Examining and Revising Message Queues
- 5.5 Sensor I/O Port
- 5.6 Data Loggers Interface
- 5.7 CR10X Data Logger
- 5.7.5 Update Interval
- 5.7.6 Transmission Order
- 5.7.8 Time of Day
- 5.7.9 Time Tagging
- 5.7.10 Memory Management
- 5.7.11 Data Scaling
- 5.7.12 Modem Enable
- 5.7.13 Setting/Reading CR10X Internal Registers
- 5.7.14 Entering CR10X Security Codes
- 5.7.15 Downloading a CR10X .DLD Program
- 5.7.16 Replacing an MRC-565 to an Operational CR10X
- 5.7.17 Replaying Data from a CR10X
- 5.8 CR1000 Data Logger
- 5.8.1 CR1000 Driver Configuration Command Summary:
- 5.8.2 Acquire Mode:
- 5.8.3 Data Retrieval Pointer Initialization
- 5.8.4 Data Retrieval Hole Collection
- 5.8.5 Update Interval
- 5.8.6 Transmission Order
- 5.8.7 Group ID Assignment
- 5.8.8 Time of Day
- 5.8.9 Time Tagging
- 5.8.10 Memory Management
- 5.8.11 Data Scaling
- 5.8.12 Modem Enable
- 5.8.13 Reading CR1000 Internal Pointers and Error Statistics
- 5.8.14 Displaying Status Table Data
- 5.8.15 Displaying and Setting Public Table Data
- 5.8.16 Downloading a Program
- 5.9 SDI-12 Sensors
- 5.9.1 Data Collection
- 5.9.2 Setup
- 5.9.3 Periodic Data Collection
- 5.9.4 Data Logging
- 5.9.5 User Interface
- 5.9.6 MRC-565 Commands
- 5.9.7 SDI, CMD, COMMAND TEXT
- 5.9.8 SDI, TRACE, {OFF/ON}
- 5.9.9 SDI-12 Command/Response List
- 5.9.10 Serial Port Command and Response Diagrams
- 5.10 Generic Data Logger
- 5.10.1 Typical Report Formats
- 5.10.2 Setup and Configuration
- 5.10.3 Viewing the generic device driver setup
- 5.10.4 AUTO Format
- 5.10.5 MULTI-LINE Format
- 5.11 Event Programming
- 6 THEORY OF OPERATION
- 6.1 CMU (MRC-56500300-04)
- 6.1.1 Receiver Analog Front End
- 6.1.2 Digital Receiver Components
- 6.1.3 Digital Transmitter Components
- 6.1.4 Discrete Digital Output, Relay Junction and Analog Input
- 6.1.5 Power Amp Interface
- 6.2 Microprocessor
- 6.2.1 Overview
- 6.2.2 Cold Fire Processor
- 6.2.3 Data Input/Output
- 6.2.4 Coldfire Microprocessor Peripherals and Serial Configuration
- 6.2.5 Power Fail Detection/Protection
- 6.2.6 Voltage Regulators
- 6.2.6.1 Input Switching Regulator
- 6.2.6.2 CF Switching Regulator
- A three output switching regulator is used to generate the three voltages that power the Cold Fire Processor and its peripheral devices. The three voltage are:
- 3.3V Powers CF54455 I/O, CPLD, RS232 interfaces, Flash Memory, Ethernet Controller
- 6.2.6.3 DSP Switching Regulator
- A three output switching regulator is used to generate the three voltages that power all circuitry associated with the Receiver and Exciter circuitry. The three voltages are:
- 3.6V Powers FPGA and DSP I/O, Rx Clock synthesizer, RF Pre Amps, TCXO, and QDUC circuit.
- 2.0V Powers the ADC circuit, the FPGA Core (1.2V), and the DSP Core (1.6V)
- 6.2.6.4 5 V Regulator
- 6.3 Power Amplifier (MRC-56500301-10)
- 6.4 Internal GNSS daughter board (optional)
- 7 Maintenance
- APPENDIX A: COMMANDS
- MESSAGE COMMANDS
- MAINTENANCE COMMANDS
- BOOT
- DATA LOGGER COMMANDS
- CR10X COMMANDS
- COMMAND
- PARAMETERS
- CR10X,GROUP,source
- CR10X,RESET
- CR10X,SCALE,type
- CR10X,SIGNATURE
- CR10X,STAT
- CR10X,TIME,source
- CR1000
- CR1000,ACQMODE,{CURRENT,ALL,LAST,N}
- CR1000,SETPTR,MM/DD/YY,HH:MM
- CR1000,INTERVAL,{off,n}
- CR1000,GROUP,{CR1000}
- CR1000,TIME,{CR1000}
- CR1000,MAXQ,nnn
- CR1000,SCALE,{CR1000,INT}
- CR1000,PUBLIC
- CR10XTD,STAT
- CR10XTD,RESET
- CR10XTD,SECURITY,xxxx,yyyy,zzzz
- CUSTID,nnnnn
- 1 – 4095
- A-Z, 0-9, -
- A-Z, 0-9, -
- A-Z, 0-9, -
- Parameter
- BOOT
- MAINTENANCE COMMANDS
- STATUS COMMANDS
- STATION CONFIGURATION COMMANDS
- APPENDIX B: FACTORY DEFAULTS
- The following is a list of MRC 565 Parameters that are installed after typing:
- To obtain a list of parameters settings in SCRIPT format for the MRC 565 type:
- APPENDIX C: EVENT PROGRAMMING
- APPENDIX D: INSTALLATION DETAILS
Page 113 MRC-565 Packet Data Radio Operations & Maintenance
The DSP processes each sample block while the next block is being collected. A separate section
discusses the multi-simultaneous channel capability of the receiver.
The sample block transfer and demodulation process is normally gated by the presence of a
signal present (SP) average power detector that is implemented in the FPGA. User settable
parameters determine the power level required in the receive channel to cross the SP threshold
and this activates the FPGA to DSP sample block transfers. A later section discusses how
features such as this are part of the low power modes (LPM) contribute to reducing the average
receiving DC power dissipation while the receiver idles.
The DSP BPSK demodulator uses a squaring loop digital PLL to recover the estimated receiver
carrier. This facilitates coherent detection of the BPSK samples. The symbol timing is also
recovered. Data bits are recovered by hard decision sampling at the symbol (bit) rate. Note that
for BPSK the symbol, baud and bit rates are all the same value. The bits are initially applied to a
digital correlator that searches for the 24 bit synchronization (sync) word. When sync is
detected, the DSP SP signal going to the CPLD is set high. This signal is needed to wake up the
CF when it is sleeping in low power mode. DSP SP can be viewed at TP9.
The balance of the bits in the received packet are funneled into message bytes and entered into a
receiver buffer in the DSP. It also notifies the CF via the HP_/HINT (TP33) that data packet
bytes are available for collection via the host port interface (HPI) between the DSP and CF.
The DSP can alternately demodulate 9.6 kbps GMSK packets. GMSK is a variation of FSK. The
I and Q sample blocks are applied to a digital limiter and frequency discriminator. The
discriminator is implemented by a delay-conjugate-multiply plus arctan algorithm. Its output is
applied to a sync correlator that detects the sync bytes as well as determining the optimum hard
decision sampling instant for the following packet bits. Operation past that point is the same as
BPSK.
6.1.2.6 Detected RF signal power (DETRF)
As mentioned earlier, the FPGA measures the noise and signal power in the signal channel,
converts it to decibel values and passes the value to the DSP every 2.08 ms. The DSP applies a
factory gain calibration factor called ADCGAIN to determine the absolute power level in dBm.
This is reported as DETRF value via HPI to the CF (and is also known as received signal
strength indicator RSSI) value that can be viewed by various commands such as MM or STAT.
The value is also converted to a scale that drives one channel of the octal utility DAC U83 over a
range of zero to five volts. The DAC output is routed to J7, the 40-pin front panel connector for
viewing with a scope or voltmeter.