Technical information

by Forest Key and Chris Hock
3
Table 1 provides an overview of the differences between these standards.
Table 1: Video Standards at a Glance
Image Size Frame Rate Aspect Ratio Display
NTSC 720 x 480 29.97 D1 Interlaced
PAL 720 x 576 25 D1 Interlaced
Computer Varies
(much larger)
-- Square Progressive
Frame Size
Conventional television screens are made up of horizontal lines while
computer monitors consist of a series of horizontal and vertical pixels. The
standard line resolution for an NTSC television is 525 lines; for PAL it is 576
lines. Most modern computer monitors have much higher vertical
resolutions (measured in pixels), such as 768 or 1024, requiring vertical
upscaling during playback in order to fill the monitor.
For NTSC video images, the SMPTE 259M professional standard specifies
that the 525 lines be represented as 720 x 486that is, 720 horizontal
pixels by 486 vertical pixels. This default video size is commonly known as
D1. Capturing footage with most modern video capture cards from a
professional BetaSP or Digital Betacam source result in a D1-sized frame.
Capturing footage from a DV source, however, yields a 720 x 480 frame. The
difference between the D1 spec and the DV spec is only 6 vertical pixels.
Many compression algorithms, including DV compression, prefer image
sizes to be a multiple of 16. By shaving off the 6 pixels from a D1 resolution,
the DV format was able to have a native resolution with a multiple of 16.
For PAL video images, frames are always 720 x 576, regardless of video
source. Because PAL’s vertical resolution, 576, is a mul tiple of 16, no
change is necessary for DV compression.
Frame Rate
Video is essentially a sequence of images flashed on the screen in rapid
succession, giving the illusion of motion. The number of frames displayed
every second is known as the frame rate, and it is measured in frames per
second (fps). The higher the frame rate, the more frames per second will be
used to display the sequence of images, resulting in smoother motion. The
trade-off, however, is that higher frame rates require a higher amount of
dataor system bandwidth to display the video.
In a broad sense, NTSC video runs at 30 fps, and PAL runs at 25 fps. In
actuality NTSC runs at 29.97 fps. The reason for the odd frame rate dates
back to the transition from black and white television to color TV signals,
where the 29.97 fps rate was chosen to ensure backwards compatibility
with existing television sets. The fractional rate is more of a mathematical
issue than anything elsethere are still 30 frames, but they run 0.1 percent
slower than actual time, giving you a frame rate of 29.97 fps.