LTM4644/LTM4644-1 Quad DC/DC µModule Regulator with Configurable 4A Output Array FEATURES n n n n n n n n n n n n n DESCRIPTION Quad Output Step-Down µModule® Regulator with 4A per Output Wide Input Voltage Range: 4V to 14V n 2.375V to 14V with External Bias 0.6V to 5.5V Output Voltage 4A DC, 5A Peak Output Current Each Channel Up to 5.5W Power Dissipation (TA = 60°C, 200 LFM, No Heat Sink) ±1.
LTM4644/LTM4644-1 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION (Note 1) TOP VIEW VIN, SVIN (Per Channel)............................... –0.3V to 15V VOUT (Per Channel) (Note 3).............–0.3V to SVIN or 6V RUN (Per Channel)...................................... –0.3V to 15V INTVCC (Per Channel)................................ –0.3V to 3.6V PGOOD, MODE, TRACK/SS, FB (Per Channel).................................... –0.3V to INTVCC CLKOUT (Note 3), CLKIN........................ –0.
LTM4644/LTM4644-1 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = 12V, per the typical application. SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS Switching Regulator Section: per Channel VIN, SVIN Input DC Voltage SVIN = VIN l 4 14 V l 0.6 5.
LTM4644/LTM4644-1 ELECTRICAL CHARACTERISTICS Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTM4644E/LTM4644E-1 is tested under pulsed load conditions such that TJ ≈ TA. The LTM4644E/LTM4644-1 is guaranteed to meet performance specifications over the 0°C to 125°C internal operating temperature range.
LTM4644/LTM4644-1 TYPICAL PERFORMANCE CHARACTERISTICS 3.3V Output Transient Response 5V Output Transient Response Start-Up with No Load VOUT 50mV/DIV AC-COUPLED VOUT 50mV/DIV AC-COUPLED IIN 0.1A/DIV LOAD STEP 1A/DIV LOAD STEP 1A/DIV VOUT 0.5V/DIV 4644 G08 20µs/DIV VIN = 12V, VOUT = 5V, IOUT = 3A TO 4A, 1A/µs OUTPUT CAPACITOR = 47µF CERAMIC 4644 G07 20µs/DIV VIN = 12V, VOUT = 3.3V, IOUT = 3A TO 4A, 1A/µs OUTPUT CAPACITOR = 47µF CERAMIC Start-Up with 4A Load 4644 G09 5ms/DIV VIN = 12V, VOUT = 1.
LTM4644/LTM4644-1 PIN FUNCTIONS PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY. VOUT1 (A1, A2, A3), VOUT2 (C1, D1, D2), VOUT3 (F1, G1, G2), VOUT4 (J1, K1, K2): Power Output Pins of Each Switching Mode Regulator Channel. Apply output load between these pins and GND pins. Recommend placing output decoupling capacitance directly between these pins and GND pins. See the Applications Information section for paralleling outputs.
LTM4644/LTM4644-1 PIN FUNCTIONS COMP1, COMP2, COMP3, COMP4 (B7, E7, H7, L7): Current Control Threshold and Error Amplifier Compensation Point of Each Switching Mode Regulator Channel. The internal current comparator threshold is proportional to this voltage. Tie the COMP pins together for parallel operation. The device is internally compensated. CLKIN (C7): External Synchronization Input to Phase Detector of the Module. This pin is internally terminated to SGND with 20kΩ.
LTM4644/LTM4644-1 BLOCK DIAGRAM CLKIN VOUT1 FB1 60.4k PGOOD1 60.4k (*LTM4644 ONLY) VIN1 INTVCC1 0.22µF 1µF 1µH MODE1 1µF RUN1 VIN 4V TO 14V VOUT1 1.2V 4A CLKOUT SGND INTERNAL FILTER GND FREQ1 162k VOUT2 PGOOD2 60.4k (*LTM4644 ONLY) FB2 100k SVIN2 VIN2 INTVCC2 1µF 0.22µF CLKIN 1µH MODE2 1µF RUN2 INTVCC2 VIN 10µF VOUT2 POWER CONTROL TRACK/SS2 0.1µF 47µF INTVCC1 GND COMP1 INTERNAL COMP 40.2k 10µF VOUT1 POWER CONTROL TRACK/SS1 0.1µF 100k SVIN1 47µF VOUT2 1.
LTM4644/LTM4644-1 DECOUPLING REQUIREMENTS (per Channel) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS CIN External Input Capacitor Requirement (VIN = 4V to 14V, VOUT = 1.5V) IOUT = 4A 4.7 10 µF COUT External Output Capacitor Requirement (VIN = 4V to 14V, VOUT = 1.5V) IOUT = 4A 22 47 µF OPERATION The LTM4644 is a quad output standalone non-isolated switch mode DC/DC power supply.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION The typical LTM4644 application circuit is shown in Figure 33. External component selection is primarily determined by the input voltage, the output voltage and the maximum load current. Refer to Table 7 for specific external capacitor requirements for a particular application.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Input Decoupling Capacitors The LTM4644 module should be connected to a low acimpedance DC source. For each regulator channel, a 10µF input ceramic capacitor is recommended for RMS ripple current decoupling. A bulk input capacitor is only needed when the input source impedance is compromised by long inductive leads, traces or not enough source capacitance. The bulk capacitor can be an electrolytic aluminum capacitor or polymer capacitor.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Multichannel Parallel Operation For loads that demand more than 4A of output current, the LTM4644 multiple regulator channels can be easily paralleled to provide more output current without increasing input and output voltage ripples. The LTM4644 has preset built-in phase shift between each two of the four regulator channels which is suitable to employ a 2+2, 3+1 or 4 channels parallel operation. Table 2 gives the phase difference between regulator channels.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION 0.60 1-PHASE 2-PHASE 4-PHASE 0.55 0.50 RMS INPUT RIPPLE CURRENT DC LOAD CURRENT 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 DUTY CYCLE (VOUT/VIN) 4644 F03 Figure 3. Normalized RMS Ripple Current for Single Phase or Polyphase Applications Output voltage tracking can also be programmed externally using the TRACK/SS pin of each regulator channel.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION The TRACK pins will have the 2.5µA current source on when a resistive divider is used to implement tracking on that specific channel. This will impose an offset on the TRACK pin input. Smaller value resistors with the same ratios as the resistor values calculated from the above equation can be used. For example, where the 60.4k is used then a 6.04k can be used to reduce the TRACK pin offset to a negligible value. VOUT1 = 3.3V OUTPUT VOLTAGE VOUT2 = 2.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION For example, RTR4(TOP) = 60.4k and RTR4(BOT) = 60.4k is a good combination for coincident tracking for VOUT(MA) = 3.3V and VOUT(SL) = 1.2V application. Pre-Biased Output Start-Up VOUT1 = 3.3V There may be situations that require the power supply to start up with some charge on the output capacitors. The LTM4644 can safely power up into a pre-biased output without discharging it. OUTPUT VOLTAGE VOUT2 = 2.5V VOUT3 = 1.8V VOUT4 = 1.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Temperature Monitoring A diode connected PNP transistor is used for the TEMP monitor function by monitoring its voltage over temperature. The temperature dependence of this diode voltage can be understood in the equation: Solving for T, T = –(VG0 – VD)/(dVD/dT) provides the temperature. 1st Example: Figure 7 for 27°C, or 300K the diode voltage is 0.598V, thus, 300K = –(1200mV – 598mV)/ –2.0 mV/K) 2nd Example: Figure 7 for 75°C, or 350K the diode voltage is 0.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Array Surface Mount Package Thermal Measurements”). The motivation for providing these thermal coefficients in found in JESD 51-12 (“Guidelines for Reporting and Using Electronic Package Thermal Information”).
LTM4644/LTM4644-1 APPLICATIONS INFORMATION is used to accurately build the mechanical geometry of the LTM4644 and the specified PCB with all of the correct material coefficients along with accurate power loss source definitions; (2) this model simulates a softwaredefined JEDEC environment consistent with JESD 51-12 to predict power loss heat flow and temperature readings at different interfaces that enable the calculation of the JEDEC-defined thermal resistance values; (3) the model and FEA software is used
LTM4644/LTM4644-1 APPLICATIONS INFORMATION rise above ambient, thus maximum junction temperature. Room temperature power loss can be derived from the efficiency curves in the Typical Performance Characteristics section and adjusted with the above junction temperature multiplicative factor. The printed circuit board is a 1.6mm thick four layer board with two ounce copper for the two outer layers and one ounce copper for the two inner layers. The PCB dimensions are 95mm × 76mm.
LTM4644/LTM4644-1 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 12VIN 5VIN POWER LOSS (W) POWER LOSS (W) APPLICATIONS INFORMATION 0 0.5 1 1.5 2 2.5 3 LOAD CURRENT (A) 3.5 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 4641 F09 12VIN 5VIN 0 0.5 1 1.5 2 2.5 3 LOAD CURRENT (A) 3.5 Figure 11. Power Loss at 1.5V Output, (Each Channel, 25°C) 1.6 4 0.5 1 1.5 2 2.5 3 LOAD CURRENT (A) 3.5 4 4641 F10 12VIN 5VIN 0 0.5 1 1.5 2 2.5 3 LOAD CURRENT (A) 3.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION 1.8 1.6 16 1.4 14 1.2 12 CURRENT (A) POWER LOSS (W) 18 12VIN 1.0 0.8 0.6 10 8 6 0.4 4 0.2 2 0 0 0.5 1 1.5 2 2.5 3 LOAD CURRENT (A) 3.5 0 4 0LFM 200LFM 400LFM 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) 4641 F15 4641 F16 Figure 16. 5VIN to 1.0VOUT Derating Curve 4-Channel Paralleled, No Heat Sink 18 18 16 16 14 14 12 12 CURRENT (A) CURRENT (A) Figure 15.
LTM4644/LTM4644-1 18 18 16 16 14 14 12 12 CURRENT (A) CURRENT (A) APPLICATIONS INFORMATION 10 8 6 4 0 30 40 8 6 4 0LFM 200LFM 400LFM 2 10 0LFM 200LFM 400LFM 2 0 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) 4641 F21 4641 F22 Figure 22. 5VIN to 1.5VOUT Derating Curve 4-Channel Paralleled, BGA Heat Sink 18 18 16 16 14 14 12 12 CURRENT (A) CURRENT (A) Figure 21. 12VIN to 1.
LTM4644/LTM4644-1 18 18 16 16 16 14 14 14 12 12 12 10 8 6 4 0 30 40 10 8 6 4 0LFM 200LFM 400LFM 2 CURRENT (A) 18 CURRENT (A) CURRENT (A) APPLICATIONS INFORMATION 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) 0 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) 9 11 POWER LOSS ALLOWANCE (W) POWER LOSS ALLOWANCE (W) 12 8 7 6 5 4 3 0LFM 200LFM 400LFM 1 0 30 40 0LFM 200LFM 400LFM 0 30 40 50 60 70 80 90 100 110 120 AMBIENT TEMPERATURE (°C) 4641 F28 Figure 2
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Table 3. 1.0V Output DERATING CURVE Figures 16, 17 Figures 16, 17 Figures 16, 17 Figures 18, 19 Figures 18, 19 Figures 18, 19 VIN (V) 5, 12 5, 12 5, 12 5, 12 5, 12 5, 12 POWER LOSS CURVE Figure 9 Figure 9 Figure 9 Figure 9 Figure 9 Figure 9 AIR FLOW (LFM) 0 200 400 0 200 400 HEAT SINK None None None BGA Heat Sink BGA Heat Sink BGA Heat Sink ΘJA (°C/W) 12.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Table 7 CIN PART NUMBER VALUE COUT1 PART NUMBER Murata GRM21BR61C106KE15L 10µF, 16V, 0805, X5R Murata GRM21BR60J476ME15 47µF, 6.3V, 0805, X5R Taiyo Yuden EMK212BJ106KG-T 10µF, 16V, 0805, X5R Taiyo Yuden JMK212BJ476MG-T Murata 22µF, 16V, 1206, X5R GRM31CR61C226ME15L Taiyo Yuden EMK316BJ226ML-T CIN (CERAMIC) (µF) VOUT (V) 1 10 1 10 1 10 1 10 1.2 10 1.2 10 1.2 10 1.2 10 1.5 10 1.5 10 1.5 10 1.5 10 1.8 10 1.8 10 1.8 10 1.
LTM4644/LTM4644-1 APPLICATIONS INFORMATION Layout Checklist/Example The high integration of LTM4644 makes the PCB board layout very simple and easy. However, to optimize its electrical and thermal performance, some layout considerations are still necessary. • To minimize the via conduction loss and reduce module thermal stress, use multiple vias for interconnection between top layer and other power layers. • Do not put via directly on the pad, unless they are capped or plated over.
LTM4644/LTM4644-1 TYPICAL APPLICATIONS 4V to 14V 10µF ×4 16V 1206 CLKIN CLKOUT VIN1 VOUT1 SVIN1 FB1 LTM4644 RUN1 COMP1 INTVCC1 TRACK/SS1 MODE1 PGOOD1 VIN2 SVIN2 RUN2 INTVCC2 MODE2 VOUT2 FB2 COMP2 TRACK/SS2 PGOOD2 VIN3 SVIN3 RUN3 INTVCC3 MODE3 VOUT3 FB3 COMP3 TRACK/SS3 PGOOD3 VIN4 SVIN4 RUN4 INTVCC4 MODE4 VOUT4 FB4 COMP4 TRACK/SS4 PGOOD4 TEMP SGND 3.3V/4A 47µF 6.3V 0805 13.3k 0.1µF 2.5V/4A 19.1k 47µF 4V 0805 60.4k 1.5V/4A 40.2k 47µF 4V 0805 13.3k 60.4k 1V/4A 90.9k 47µF 4V 0805 13.
LTM4644/LTM4644-1 TYPICAL APPLICATIONS 2.375V to 5V 10µF ×4 6.3V 1206 5V BIAS 1µF 6.3V CLKIN CLKOUT VIN1 VOUT1 SVIN1 FB1 LTM4644 RUN1 COMP1 INTVCC1 TRACK/SS1 MODE1 PGOOD1 VIN2 SVIN2 RUN2 INTVCC2 MODE2 VOUT2 FB2 COMP2 TRACK/SS2 PGOOD2 VIN3 SVIN3 RUN3 INTVCC3 MODE3 VOUT3 FB3 COMP3 TRACK/SS3 PGOOD3 VIN4 SVIN4 RUN4 INTVCC4 MODE4 VOUT4 FB4 COMP4 TRACK/SS4 PGOOD4 TEMP SGND 30.1k 47µF 4V 0805 40.2k 47µF 4V 0805 60.4k 47µF 4V 0805 90.9k 47µF 4V 0805 1.8V/4A 0.1µF 1.5V/4A 0.1µF 1.2V/4A 0.
LTM4644/LTM4644-1 TYPICAL APPLICATIONS VIN 4V to 14V CLKIN CLKOUT VIN1 VOUT1 SVIN1 FB1 LTM4644 RUN1 COMP1 INTVCC1 TRACK/SS1 MODE1 PGOOD1 22µF ×2 16V 1206 VIN V – 0.6V RT = IN 100µA VIN2 SVIN2 RUN2 INTVCC2 MODE2 VOUT2 FB2 COMP2 TRACK/SS2 PGOOD2 VIN3 SVIN3 RUN3 INTVCC3 MODE3 VOUT3 FB3 COMP3 TRACK/SS3 PGOOD3 VIN4 SVIN4 RUN4 INTVCC4 MODE4 VOUT4 FB4 COMP4 TRACK/SS4 PGOOD4 TEMP RT SGND 15.1k 47µF ×3 4V 0805 1.2V/16A 0.1µF GND 4644 F35 A/D Figure 35. 4V to 14V Input, 4-Phase, 1.
LTM4644/LTM4644-1 TYPICAL APPLICATIONS CLKIN VIN 4V to 14V VIN1 SVIN1 RUN1 INTVCC1 MODE1 22µF ×2 16V 1206 VIN V – 0.6V RT = IN 100µA VOUT1 60.4k LTM4644-1 FB1 COMP1 TRACK/SS1 PGOOD1 VIN2 SVIN2 RUN2 INTVCC2 MODE2 VOUT2 FB2 COMP2 TRACK/SS2 PGOOD2 VIN3 SVIN3 RUN3 INTVCC3 MODE3 VOUT3 FB3 COMP3 TRACK/SS3 PGOOD3 VIN4 SVIN4 RUN4 INTVCC4 MODE4 VOUT4 FB4 COMP4 TRACK/SS4 PGOOD4 TEMP RT CLKOUT SGND 47µF ×3 4V 0805 1.2V/16A 60.4k 0.1µF GND 4644 F36 A/D Figure 36. 4V to 14V Input, 4-Phase, 1.
LTM4644/LTM4644-1 TYPICAL APPLICATIONS 5V 12V 22µF ×2 16V 1206 22µF ×2 16V 1206 CLKIN CLKOUT VIN1 VOUT1 SVIN1 FB1 LTM4644 RUN1 COMP1 INTVCC1 TRACK/SS1 MODE1 PGOOD1 VIN2 SVIN2 RUN2 INTVCC2 MODE2 VOUT2 FB2 COMP2 TRACK/SS2 PGOOD2 VIN3 SVIN3 RUN3 INTVCC3 MODE3 VOUT3 FB3 COMP3 TRACK/SS3 PGOOD3 VIN4 SVIN4 RUN4 INTVCC4 MODE4 VOUT4 FB4 COMP4 TRACK/SS4 PGOOD4 TEMP SGND 30.2k 47µF ×2 4V 0805 6.65k 47µF ×2 6.3V 0805 1.2V/8A 0.1µF 3.3V/8A 0.1µF GND 4644 F36 Figure 37.
10.0m 19.1k 13.3k 40.2k 60.4k VOUT3 60.4k VOUT2 60.4k VOUT1 VIN 4.5V TO 14V 0.1µF For more information www.analog.com MODE1 MODE2 MODE3 MODE4 SGND GND RUN1 RUN2 RUN3 RUN4 FB4 VOUT4 FB3 90.9k 10.0m 40.2k 10.0m 19.1k 10.0m 13.3k 10.0m 60.4k 60.4k 60.4k 60.4k 10.0k 10.0k 10.0k 10.0k 47µF 1k 47µF 1k 47µF 1k 47µF 1k 1k 1k 1k 1k VOUT1 3.3V/4A VOUT2 2.5V/4A VOUT3 1.5V/4A VOUT4 1.0V/4A 100Ω 10nF 0.1µF 100Ω 10nF 100Ω 10nF 0.1µF 100Ω 10nF 100Ω 10nF 0.
LTM4644/LTM4644-1 PACKAGE DESCRIPTION PACKAGE ROW AND COLUMN LABELING MAY VARY AMONG µModule PRODUCTS. REVIEW EACH PACKAGE LAYOUT CAREFULLY.
0.630 ±0.025 Ø 77x 4 E PACKAGE TOP VIEW SUGGESTED PCB LAYOUT TOP VIEW 2.540 PIN “A1” CORNER 1.270 aaa Z 0.3175 0.000 0.3175 Downloaded from Arrow.com. 1.270 34 2.540 Y For more information www.analog.com 6.350 5.080 3.810 2.540 1.270 0.000 1.270 2.540 3.810 5.080 6.350 D X aaa Z NOM 5.01 0.60 4.41 0.75 0.63 15.00 9.00 1.27 12.70 7.62 0.41 4.00 DIMENSIONS b1 A A2 MAX 5.21 0.70 4.51 0.90 0.66 NOTES DETAIL B PACKAGE SIDE VIEW 0.46 4.05 0.15 0.10 0.20 0.30 0.
LTM4644/LTM4644-1 REVISION HISTORY REV DATE DESCRIPTION A 01/14 Add SnPb BGA package option B 06/14 Add Tech Clip video link 1 Update Order Information 2 C 05/16 D 12/16 PAGE NUMBER 1, 2 Update Run Threshold 3 Update Figure 5 13 Update Soft-Start and Output Voltage Tracking Section 14 Added MP-grade (–55°C to 125°C) 2 Added LTM4644-1 1 ,2, 4, 9, 10, 33 Added Comparison Table between LTM4644 and LTM4644-1 1 Added Output Voltage Programing (LTM4644-1) 10 Added Figure 36 30 Add
LTM4644/LTM4644-1 PACKAGE PHOTO DESIGN RESOURCES SUBJECT DESCRIPTION µModule Design and Manufacturing Resources Design: • Selector Guides • Demo Boards and Gerber Files • Free Simulation Tools µModule Regulator Products Search 1. Sort table of products by parameters and download the result as a spread sheet. Manufacturing: • Quick Start Guide • PCB Design, Assembly and Manufacturing Guidelines • Package and Board Level Reliability 2. Search using the Quick Power Search parametric table.