Datasheet
LTC3880/LTC3880-1
56
3880fc
For more information www.linear.com/LTC3880
the IC. Ensure accurate current sensing with Kelvin
connections at the sense resistor or inductor, whichever
is used for current sensing.
5. Is the INTV
CC
decoupling capacitor connected close to
the IC, between the INTV
CC
and the power ground pins?
This capacitor carries the MOSFET drivers current peaks.
An additional 1µF ceramic capacitor placed immediately
next to the INTV
CC
and PGND pins can help improve
noise performance substantially.
6. Keep the switching nodes (SW1, SW0), top gate nodes
(TG1, TG0), and boost nodes (BOOST1, BOOST0) away
from sensitive small-signal nodes, especially from the
opposite channel’s voltage and current sensing feed-
back pins. All of these nodes have very large and fast
moving signals and therefore should be kept on the
“output side” of the LTC3880 and occupy minimum
PC trace area. If DCR sensing is used, place the top
resistor (Figure 18a, R1) close to the switching node.
7. Use a modified “star ground” technique: a low imped
-
ance, large copper area central grounding point on
the same side of the PC board as the input and output
capacitors with tie-ins for the bottom of the INTV
CC
decoupling capacitor, the bottom of the voltage feedback
resistive divider and the SGND pin of the IC.
PC BOARD LAYOUT DEBUGGING
Start with one controller at a time. It is helpful to use a
DC-50MHz current probe to monitor the current in the
inductor while testing the circuit. Monitor the output
switching node (SW pin) to synchronize the oscilloscope
to the internal oscillator and probe the actual output voltage
as well. Check for proper performance over the operating
voltage and current range expected in the application.
The frequency of operation should be maintained over
the input voltage range down to dropout and until the
output load drops below the low current operation
threshold—typically 10% of the maximum designed cur-
rent level in Burst Mode operation.
The duty cycle per
centage should be maintained from
cycle to cycle in a well-designed, low noise PCB implemen-
tation. V
ariation in the duty cycle at a subharmonic rate
can suggest noise pickup at the current or voltage sensing
inputs
or inadequate loop compensation. Overcompensa
-
tion of the loop can be used to tame a poor PC layout if
regulator bandwidth optimization is not required. Only after
each controller is checked for its individual performance
should both controllers be turned on at the same time.
A particularly difficult region of operation is when one
controller channel is nearing its current comparator trip
point when the other channel is turning on its top MOSFET.
This occurs around 50% duty cycle on either channel due
to the phasing of the internal clocks and may cause minor
duty cycle jitter.
Reduce V
IN
from its nominal level to verify operation
of the regulator in dropout. Check the operation of the
undervoltage lockout circuit by further lowering V
IN
while
monitoring the outputs to verify operation.
Investigate whether any problems exist only at higher out
-
put currents or only at higher input voltages. If problems
coincide with high input voltages and low output currents,
look for capacitive coupling between the BOOST, SW, TG,
and possibly BG connections and the sensitive voltage
and current pins. The capacitor placed across the current
sensing pins needs to be placed immediately adjacent to
the pins of the IC. This capacitor helps to minimize the
effects of differential noise injection due to high frequency
capacitive coupling. If problems are encountered with
high current output loading at lower input voltages, look
for inductive coupling between C
IN
, Schottky and the top
MOSFET components to the sensitive current and voltage
sensing traces. In addition, investigate common ground
APPLICATIONS INFORMATION