Datasheet

LTC3859A
32
3859af
applicaTions inForMaTion
Efficiency Considerations
The percent efficiency of a switching regulator is equal to
the output power divided by the input power times 100%.
It is often useful to analyze individual losses to determine
what is limiting the efficiency and which change would
produce the most improvement. Percent efficiency can
be expressed as:
%Efficiency = 100% – (L1 + L2 + L3 + ...)
where L1, L2, etc. are the individual losses as a percent-
age of input power.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for most of the
losses in LTC3859A circuits: 1) IC V
IN
current, 2) INTV
CC
regulator current, 3) I
2
R losses, 4) Topside MOSFET
transition losses.
1. The V
IN
current is the DC supply current given in the
Electrical Characteristics table, which excludes MOSFET
driver and control currents. V
IN
current typically results
in a small (<0.1%) loss.
2. INTV
CC
current is the sum of the MOSFET driver and
control currents. The MOSFET driver current results
from switching the gate capacitance of the power
MOSFETs. Each time a MOSFET gate is switched from
low to high to low again, a packet of charge, dQ, moves
from INTV
CC
to ground. The resulting dQ/dt is a current
out of INTV
CC
that is typically much larger than the
control circuit current. In continuous mode, I
GATECHG
= f(Q
T
+ Q
B
), where Q
T
and Q
B
are the gate charges of
the topside and bottom side MOSFETs.
Supplying INTV
CC
from an output-derived source power
through EXTV
CC
will scale the V
IN
current required
for the driver and control circuits by a factor of (Duty
Cycle)/(Efficiency). For example, in a 20V to 5V applica-
tion, 10mA of INTV
CC
current results in approximately
2.5mA of V
IN
current. This reduces the mid-current loss
from 10% or more (if the driver was powered directly
from V
IN
) to only a few percent.
3. I
2
R losses are predicted from the DC resistances of the
fuse (if used), MOSFET, inductor, current sense resis-
tor, and input and output capacitor ESR. In continuous
mode the average output current flows through L and
R
SENSE
, but is “chopped” between the topside MOSFET
and the synchronous MOSFET. If the two MOSFETs have
approximately the same R
DS(ON)
, then the resistance
of one MOSFET can simply be summed with the resis-
tances of L, R
SENSE
and ESR to obtain I
2
R losses. For
example, if each R
DS(ON)
= 30mΩ, R
L
= 50mΩ, R
SENSE
= 10mΩ and R
ESR
= 40mΩ (sum of both input and
output capacitance losses), then the total resistance
is 130mΩ. This results in losses ranging from 3% to
13% as the output current increases from 1A to 5A for
a 5V output, or a 4% to 20% loss for a 3.3V output.
Efficiency varies as the inverse square of V
OUT
for the
same external components and output power level. The
combined effects of increasingly lower output voltages
and higher currents required by high performance digital
systems is not doubling but quadrupling the importance
of loss terms in the switching regulator system!
4. Transition losses apply only to the top MOSFET(s) (bot-
tom MOSFET for the boost), and become significant only
when operating at high input voltages (typically 15V or
greater). Transition losses can be estimated from:
Transition Loss = (1.7)V
IN
2
• I
O(MAX)
• C
RSS
• f
Other hidden losses such as copper trace and internal
battery resistances can account for an additional 5%
to 10% efficiency degradation in portable systems. It is
very important to include these “system” level losses
during the design phase. The internal battery and fuse
resistance losses can be minimized by making sure that
C
IN
has adequate charge storage and very low ESR at
the switching frequency. A 25W supply will typically
require a minimum of 20µF to 40µF of capacitance
having a maximum of 20mΩ to 50mΩ of ESR. The
LTC3859A 2-phase architecture typically halves this
input capacitance requirement over competing solu-
tions. Other losses including Schottky conduction losses
during dead-time and inductor core losses generally
account for less than 2% total additional loss.