Datasheet
LTC3728
13
3728fg
OPERATION
Figure 3. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the LTC1628 2-Phase Regulator Allows
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Effi ciency
I
IN(MEAS)
= 1.55A
RMS
I
IN(MEAS)
= 2.53A
RMS
3728 F03b3728 F03a
3.3V SWITCH
20V/DIV
5V SWITCH
20V/DIV
INPUT CURRENT
5A/DIV
INPUT VOLTAGE
500mV/DIV
(a) (b)
Why the need for 2-phase operation? Up until the 2-
phase family, constant-frequency dual switching regula-
tors operated both channels in phase (i.e., single-phase
operation). This means that both switches turned on at
the same time, causing current pulses of up to twice the
amplitude of those for one regulator to be drawn from the
input capacitor and battery. These large amplitude current
pulses increased the total RMS current fl owing from the
input capacitor, requiring the use of more expensive input
capacitors and increasing both EMI and losses in the input
capacitor and battery.
With 2-phase operation, the two channels of the dual-
switching regulator are operated 180 degrees out of phase.
This effectively interleaves the current pulses drawn by the
switches, greatly reducing the overlap time where they add
together.
The result is a signifi cant reduction in total RMS
input current, which in turn allows less expen
sive input
capacitors to be used, reduces shielding requirements for
EMI and improves real world operating effi ciency.
Figure 3 compares the input waveforms for a representa-
tive single-phase dual switching regulator to the LTC1628
2-phase dual switching regulator. An actual measurement
of the RMS input current under these conditions shows
that 2-phase operation dropped the input current from
2.53A
RMS
to 1.55A
RMS
. While this is an impressive
reduction in itself, remember that the power losses are
proportional to I
RMS
2
, meaning that the actual power wasted
is reduced by a factor of 2.66. The reduced input ripple
voltage also means less power is lost in the input power
path, which could include batteries, switches, trace/con-
nector resistances and protection circuitry. Improvements
in both conducted and radiated EMI also directly accrue as
a result of the reduced RMS input current and voltage.
Of course, the improvement afforded by 2-phase opera-
tion is a function of the dual switching regulator’s relative
duty cycles which, in turn, are dependent upon the input
voltage V
IN
(Duty Cycle = V
OUT
/V
IN
). Figure 4 shows how
the RMS input current varies for single-phase and 2-phase
operation for 3.3V and 5V regulators over a wide input
voltage range.
It can readily be seen that the advantages of 2-phase opera-
tion are not just limited to a narrow operating range, but
in fact extend over a wide region. A good rule of thumb
for most applications is that 2-phase operation will reduce
the input capacitor requirement to that for just one channel
operating at maximum current and 50% duty cycle.
(Refer to Functional Diagram)