Datasheet

LTC3418
10
3418fb
APPLICATIONS INFORMATION
Different core materials and shapes will change the size/cur-
rent and price/current relationship of an inductor. Toroid
or shielded pot cores in ferrite or permalloy materials are
small and don’t radiate much energy, but generally cost
more than powdered iron core inductors with similar
characteristics. The choice of which style inductor to use
mainly depends on the price vs size requirements and any
radiated fi eld/EMI requirements. New designs for surface
mount inductors are available from Coiltronics, Coilcraft,
Toko and Sumida.
C
IN
and C
OUT
Selection
The input capacitance, C
IN
, is needed to fi lter the trapezoidal
wave current at the source of the top MOSFET. To prevent
large voltage transients from occurring, a low ESR input
capacitor sized for the maximum RMS current should be
used. The maximum RMS current is given by:
I
RMS
=I
OUT(MAX)
V
OUT
V
IN
V
IN
V
OUT
–1
This formula has a maximum at V
IN
= 2V
OUT
, where I
RMS
=
I
OUT
/ 2 . T h i s s i m p l e w o r s t - c a s e c o n d i t i o n i s c o m m o n l y u s e d
for design because even signifi cant deviations do not offer
much relief. Note that ripple current ratings from capacitor
manufacturers are often based on only 2000 hours of life
which makes it advisable to further derate the capacitor,
or choose a capacitor rated at a higher temperature than
required. Several capacitors may also be paralleled to meet
size or height requirements in the design.
The selection of C
OUT
is determined by the effective series
r e s i s t a n c e ( E S R) t h a t i s r e q u i r e d t o m i ni m i z e v o l t a g e r i p p l e
and load step transients as well as the amount of bulk
capacitance that is necessary to ensure that the control
loop is stable. Loop stability can be checked by viewing
the load transient response as described in a later section.
The output ripple, ΔV
OUT
, is determined by:
V
OUT
I
L
ESR+
1
8fC
OUT
The output ripple is highest at maximum input voltage
since ΔI
L
increases with input voltage. Multiple capacitors
placed in parallel may be needed to meet the ESR and
RMS current handling requirements. Dry tantalum, special
polymer, aluminum electrolytic and ceramic capacitors are
all available in surface mount packages. Special polymer
capacitors offer very low ESR but have lower capacitance
density than other types. Tantalum capacitors have the
highest capacitance density but it is important to only use
types that have been surge tested for use in switching
power supplies. Aluminum electrolytic capacitors have
signifi cantly higher ESR, but can be used in cost-sensitive
applications provided that consideration is given to ripple
current ratings and long term reliability. Ceramic capaci-
tors have excellent low ESR characteristics but can have a
high voltage coef cient and audible piezoelectric effects.
The high Q of ceramic capacitors with trace inductance
can also lead to signifi cant ringing.
Using Ceramic Input and Output Capacitors
Higher values, lower cost ceramic capacitors are now
becoming available in smaller case sizes. Their high ripple
current, high voltage rating and low ESR make them ideal
for switching regulator applications. However, care must
be taken when these capacitors are used at the input and
output. When a ceramic capacitor is used at the input and
the power is supplied by a wall adapter through long wires,
a load step at the output can induce ringing at the input,
V
IN
. At best, this ringing can couple to the output and be
mistaken as loop instability. At worst, a sudden inrush
of current through the long wires can potentially cause a
voltage spike at V
IN
large enough to damage the part.
When choosing the input and output ceramic capacitors,
choose the X5R or X7R dielectric formulations. These
dielectrics have the best temperature and voltage charac-
teristics of all the ceramics for a given value and size.
Output Voltage Programming
The output voltage is set by an external resistive divider
according to the following equation:
V
OUT
= 0.8 1+
R2
R
1
The resistive divider allows pin V
FB
to sense a fraction of
the output voltage as shown in Figure 1.