Datasheet
LTC3406A
10
3406afa
Although all dissipative elements in the circuit produce
losses, two main sources usually account for most of
the losses in LTC3406A circuits: V
IN
quiescent current
and I
2
R losses. The V
IN
quiescent current loss dominates
the effi ciency loss at very low load currents whereas the
I
2
R loss dominates the effi ciency loss at medium to high
load currents. In a typical effi ciency plot, the effi ciency
curve at very low load currents can be misleading since
the actual power lost is of no consequence as illustrated
in Figure 2.
2. I
2
R losses are calculated from the resistances of the
internal switches, R
SW
, and external inductor R
L
. In
continuous mode, the average output current fl owing
through inductor L is “chopped” between the main
switch and the synchronous switch. Thus, the series
resistance looking into the SW pin is a function of both
top and bottom MOSFET R
DS(ON)
and the duty cycle
(DC) as follows:
R
SW
= (R
DS(ON)TOP
)(DC) + (R
DS(ON)BOT
)(1 – DC)
The R
DS(ON)
for both the top and bottom MOSFETs can be
obtained from the Typical Performance Characteristics
curves. Thus, to obtain I
2
R losses, simply add R
SW
to
R
L
and multiply the result by the square of the average
output current.
Other losses including C
IN
and C
OUT
ESR dissipative losses
and inductor core losses generally account for less than
2% total additional loss.
Thermal Considerations
In most applications the LTC3406A does not dissipate
much heat due to its high effi ciency. But, in applications
where the LTC3406A is running at high ambient tem-
perature with low supply voltage and high duty cycles,
such as in dropout, the heat dissipated may exceed the
maximum junction temperature of the part. If the junction
temperature reaches approximately 150°C, both power
switches will be turned off and the SW node will become
high impedance.
To avoid the LTC3406A from exceeding the maximum junc-
tion temperature, the user will need to do some thermal
analysis. The goal of the thermal analysis is to determine
whether the power dissipated exceeds the maximum
junction temperature of the part. The temperature rise is
given by:
T
R
= (P
D
)(θ
JA
)
where P
D
is the power dissipated by the regulator and θ
JA
is the thermal resistance from the junction of the die to
the ambient temperature.
APPLICATIONS INFORMATION
Figure 2. Power Lost vs Load Current
1. The V
IN
quiescent current is due to two components:
the DC bias current as given in the electrical charac-
teristics and the internal main switch and synchronous
switch gate charge currents. The gate charge current
results from switching the gate capacitance of the
internal power MOSFET switches. Each time the gate
is switched from high to low to high again, a packet of
charge, dQ, moves from V
IN
to ground. The resulting
dQ/dt is the current out of V
IN
that is typically larger
than the DC bias current. In continuous mode, I
GATECHG
= f(Q
T
+ Q
B
) where Q
T
and Q
B
are the gate charges of
the internal top and bottom switches. Both the DC bias
and gate charge losses are proportional to V
IN
and thus
their effects will be more pronounced at higher supply
voltages.
OUTPUT CURRENT (mA)
0.001
POWER LOSS (W)
0.01
0.1
1
0.1 10 100 1000
3406A F02
0.0001
1
V
OUT
= 1.2V
V
OUT
= 1.8V
V
OUT
= 2.5V
V
IN
= 3.6V