Datasheet
10
LTC3405A-1.5/LTC3405A-1.8
3405a1518fa
APPLICATIO S I FOR ATIO
WUUU
2. I
2
R losses are calculated from the resistances of the
internal switches, R
SW
, and external inductor R
L
. In
continuous mode, the average output current flowing
through inductor L is “chopped” between the main
switch and the synchronous switch. Thus, the series
resistance looking into the SW pin is a function of both
top and bottom MOSFET R
DS(ON)
and the duty cycle
(DC) as follows:
R
SW
= (R
DS(ON)TOP
)(DC) + (R
DS(ON)BOT
)(1 – DC)
The R
DS(ON)
for both the top and bottom MOSFETs can
be obtained from the Typical Performance Charateristics
curves. Thus, to obtain I
2
R losses, simply add R
SW
to
R
L
and multiply the result by the square of the average
output current.
Other losses including C
IN
and C
OUT
ESR dissipative
losses and inductor core losses generally account for less
than 2% total additional loss.
Thermal Considerations
In most applications, the LTC3405A
series parts
do not
dissipate much heat due to their high efficiency. But, in
applications where they run at high ambient temperature
with low supply voltage, the heat dissipated may exceed
the maximum junction temperature of the part. If the
junction temperature reaches approximately 150°C, both
power switches will be turned off and the SW node will
become high impedance.
To keep the LTC3405A
series parts
from exceeding the
maximum junction temperature, the user will need to do
some thermal analysis. The goal of the thermal analysis is
to determine whether the power dissipated exceeds the
maximum junction temperature of the part. The tempera-
ture rise is given by:
T
R
= (P
D
)(θ
JA
)
where P
D
is the power dissipated by the regulator and θ
JA
is the thermal resistance from the junction of the die to the
ambient temperature.
The junction temperature, T
J
, is given by:
T
J
= T
A
+ T
R
where T
A
is the ambient temperature.
As an example, consider the LTC3405A-1.8 with an input
voltage of 2.7V, a load current of 300mA and an ambient
temperature of 70°C. From the typical performance graph
of switch resistance, the R
DS(ON)
of the P-channel switch
at 70°C is approximately 0.94Ω and the R
DS(ON)
of the
N-channel synchronous switch is approximately 0.75Ω.
The series resistance looking into the SW pin is:
R
SW
= 0.95Ω (0.67) + 0.75Ω (0.33) = 0.88Ω
Therefore, power dissipated by the part is:
P
D
= I
LOAD
2
• R
SW
= 79.2mW
For the SOT-23 package, the θ
JA
is 250°C/W. Thus, the
junction temperature of the regulator is:
T
J
= 70°C + (0.0792)(250) = 89.8°C
which is well below the maximum junction temperature of
125°C.
Note that at higher supply voltages, the junction tempera-
ture is lower due to reduced switch resistance (R
DS(ON)
).
Checking Transient Response
The regulator loop response can be checked by looking at
the load transient response. Switching regulators take
several cycles to respond to a step in load current. When
a load step occurs, V
OUT
immediately shifts by an amount
equal to (∆I
LOAD
• ESR), where ESR is the effective series
resistance of C
OUT
. ∆I
LOAD
also begins to charge or
discharge C
OUT
, which generates a feedback error signal.
The regulator loop then acts to return V
OUT
to its steady-
state value. During this recovery time V
OUT
can be moni-
tored for overshoot or ringing that would indicate a stability
problem. For a detailed explanation of switching control
loop theory, see Application Note 76.