Datasheet

LTC1871
19
1871fe
APPLICATIONS INFORMATION
Table 1. Recommended Component Manufacturers
VENDOR COMPONENTS TELEPHONE WEB ADDRESS
AVX Capacitors (207) 282-5111 avxcorp.com
BH Electronics Inductors, Transformers (952) 894-9590 bhelectronics.com
Coilcraft Inductors (847) 639-6400 coilcraft.com
Coiltronics Inductors (407) 241-7876 coiltronics.com
Diodes, Inc Diodes (805) 446-4800 diodes.com
Fairchild MOSFETs (408) 822-2126 fairchildsemi.com
General Semiconductor Diodes (516) 847-3000 generalsemiconductor.com
International Rectifi er MOSFETs, Diodes (310) 322-3331 irf.com
IRC Sense Resistors (361) 992-7900 irctt.com
Kemet Tantalum Capacitors (408) 986-0424 kemet.com
Magnetics Inc Toroid Cores (800) 245-3984 mag-inc.com
Microsemi Diodes (617) 926-0404 microsemi.com
Murata-Erie Inductors, Capacitors (770) 436-1300 murata.co.jp
Nichicon Capacitors (847) 843-7500 nichicon.com
On Semiconductor Diodes (602) 244-6600 onsemi.com
Panasonic Capacitors (714) 373-7334 panasonic.com
Sanyo Capacitors (619) 661-6835 sanyo.co.jp
Sumida Inductors (847) 956-0667 sumida.com
Taiyo Yuden Capacitors (408) 573-4150 t-yuden.com
TDK Capacitors, Inductors (562) 596-1212 component.tdk.com
Thermalloy Heat Sinks (972) 243-4321 aavidthermalloy.com
Tokin Capacitors (408) 432-8020 nec-tokinamerica.com
Toko Inductors (847) 699-3430 tokoam.com
United Chemicon Capacitors (847) 696-2000 chemi-com.com
Vishay/Dale Resistors (605) 665-9301 vishay.com
Vishay/Siliconix MOSFETs (800) 554-5565 vishay.com
Vishay/Sprague Capacitors (207) 324-4140 vishay.com
Zetex Small-Signal Discretes (631) 543-7100 zetex.com
Pulse skipping prevents a loss of control of the output at
very light loads and reduces output voltage ripple.
Effi ciency Considerations: How Much Does V
DS
Sensing Help?
The effi ciency of a switching regulator is equal to the out-
put power divided by the input power (×100%). Percent
effi ciency can be expressed as:
% Effi ciency = 100% – (L1 + L2 + L3 + …),
where L1, L2, etc. are the individual loss components as a
percentage of the input power. It is often useful to analyze
individual losses to determine what is limiting the effi ciency
and which change would produce the most improvement.
Although all dissipative elements in the circuit produce
losses, four main sources usually account for the majority
of the losses in LTC1871 application circuits:
1. The supply current into V
IN
. The V
IN
current is the sum
of the DC supply current I
Q
(given in the Electrical Char-
acteristics) and the MOSFET driver and control currents.
The DC supply current into the V
IN
pin is typically about
550µA and represents a small power loss (much less
than 1%) that increases with V
IN
. The driver current
results from switching the gate capacitance of the power
MOSFET; this current is typically much larger than the
DC current. Each time the MOSFET is switched on and










