Datasheet
1603f
5
LTC1603
Note 1: Absolute Maximum Ratings are those values beyond which the life
of a device may be impaired.
Note 2: All voltage values are with respect to ground with DGND, OGND
and AGND wired together unless otherwise noted.
Note 3: When these pin voltages are taken below V
SS
or above V
DD
, they
will be clamped by internal diodes. This product can handle input currents
greater than 100mA below V
SS
or above V
DD
without latchup.
Note 4: When these pin voltages are taken below V
SS
, they will be clamped
by internal diodes. This product can handle input currents greater than
100mA below V
SS
without latchup. These pins are not clamped to V
DD
.
Note 5: V
DD
= 5V, V
SS
= –5V, f
SMPL
= 250kHz, and t
r
= t
f
= 5ns unless
otherwise specified.
Note 6: Linearity, offset and full-scale specification apply for a single-
ended A
IN
+
input with A
IN
–
grounded.
Note 7: Integral nonlinearity is defined as the deviation of a code from a
straight line passing through the actual endpoints of the transfer curve.
The deviation is measured from the center of the quantization band.
TI I G CHARACTERISTICS
UW
(Note 5)
Note 8: Typical RMS noise at the code transitions. See Figure 17 for
histogram.
Note 9: Bipolar offset is the offset voltage measured from –0.5LSB when
the output code flickers between 0000 0000 0000 0000 and 1111 1111
1111 1111.
Note 10: Signal-to-Noise Ratio (SNR) is measured at 5kHz and distortion
is measured at 100kHz. These results are used to calculate Signal-to-Nosie
Plus Distortion (SINAD).
Note 11: Guaranteed by design, not subject to test.
Note 12: Recommended operating conditions.
Note 13: The falling CONVST edge starts a conversion. If CONVST returns
high at a critical point during the conversion it can create small errors. For
best performance ensure that CONVST returns high either within 250ns
after conversion start or after BUSY rises.
TYPICAL PERFORMANCE CHARACTERISTICS
UW
CODE
INL (LSB)
–32768 –16384 0 16384 32767
1603 G11
2.0
1.5
1.0
0.5
0.0
–0.5
–1.0
–1.5
–2.0
Integral Nonlinearity vs
Output Code
CODE
–32768 –16384 16384 32767
DNL (LSB)
1603 G10
1.0
0.8
0.6
0.4
0.2
0.0
–0.2
–0.4
–0.6
–0.8
–1.0
0
Differential Nonlinearity vs
Output Code