Datasheet
LT3844
16
3844fb
APPLICATIONS INFORMATION
2. I
2
R losses are calculated from the DC resistances of the
MOSFET, the inductor, the sense resistor and the input
and output capacitors. In continuous conduction mode
the average output current fl ows through the inductor
and R
SENSE
but is chopped between the MOSFET and
the Schottky diode. The resistances of the MOSFET
(R
DS(ON)
) and the R
SENSE
multiplied by the duty cycle
can be summed with the resistances of the inductor
and R
SENSE
to obtain the total series resistance of the
circuit. The total conduction power loss is proportional
to this resistance and usually accounts for between 2%
to 5% loss in effi ciency.
3. Transition losses of the MOSFET can be substantial with
input voltages greater than 20V. See MOSFET Selection
section.
4. The Schottky diode can be a major contributor of power
loss especially at high input to output voltage ratios (low
duty cycles) where the diode conducts for the majority
of the switch period. Lower V
f
reduces the losses. Note
that oversizing the diode does not always help because
as the diode heats up the V
f
is reduced and the diode
loss term is decreased.
I
2
R losses and the Schottky diode loss dominate at
high load currents. Other losses including C
IN
and
C
OUT
ESR dissipative losses and inductor core losses
generally account for less than 2% total additional loss
in effi ciency.
PCB Layout Checklist
When laying out the printed circuit board, the following
checklist should be used to ensure proper operation. These
items are illustrated graphically in the layout diagram of
Figure 3.
1. Keep the signal and power grounds separate. The
signal ground consists of the LT3844 SGND pin, the
Exposed Pad on the backside of the LT3844 IC and the
(–) terminal of V
OUT
. The signal ground is the quiet
ground and does not contain any high, fast currents.
The power ground consists of the Schottky diode anode,
the (–) terminal of the input capacitor and the ground
return of the V
CC
capacitor. This ground has very fast
high currents and is considered the noisy ground. The
two grounds are connected to each other only at the
(–) terminal of V
OUT
.
2. Use short wide traces in the loop formed by the
MOSFET, the Schottky diode and the input capacitor to
minimize high frequency noise and voltage stress from
parasitic inductance. Surface mount components are
preferred.
3. Connect the V
FB
pin directly to the feedback resistors
independent of any other nodes, such as the SENSE
–
pin.
Connect the feedback resistors between the (+) and (–)
terminals of C
OUT
. Locate the feedback resistors in close
proximity to the LT3844 to keep the high impedance
node, V
FB
, as short as possible.
4. Route the SENSE
–
and SENSE
+
traces together and
keep as short as possible.
5. Locate the V
CC
and BOOST capacitors in close proximity
to the IC. These capacitors carry the MOSFET driver’s
high peak currents. Place the small-signal components
away from high frequency switching nodes (BOOST, SW
and TG). In the layout shown in Figure 3, place all the
small-signal components on one side of the IC and all
the power components on the other. This helps to keep
the signal and power grounds separate.
6. A small decoupling capacitor (100pF) is sometimes
useful for fi ltering high frequency noise on the feedback
and sense nodes. If used, locate as close to the IC as
possible.
7. The LT3844 packaging will effi ciently remove heat from
the IC through the Exposed Pad on the backside of the
part. The Exposed Pad is soldered to a copper footprint
on the PCB. Make this footprint as large as possible
to improve the thermal resistance of the IC case to
ambient air. This helps to keep the LT3844 at a lower
temperature.
8. Make the trace connecting the gate of MOSFET M1 to
the TG pin of the LT3844 short and wide.