Datasheet
LT3741/LT3741-1
14
37411fe
For more information www.linear.com/LT3741
(R
DS(ON)
), gate to drain charge (Q
GD
), gate-to-source
charge (Q
GS
), gate resistance (R
G
), breakdown voltages
(maximum V
GS
and V
DS
) and drain current (maximum I
D
).
The following guidelines provide information to make the
selection process easier.
Both of the switching MOSFETs need to have their maximum
rated drain currents greater than the maximum inductor current.
The following equation calculates the peak inductor current:
I
MAX
= I
O
+
V
IN
• V
O
– V
O
2
2• f
S
•L • V
IN
⎛
⎝
⎜
⎞
⎠
⎟
where V
IN
is the input voltage, L is the inductance value, V
O
is the output voltage, I
O
is the regulated output current and f
S
is the switching frequency. During MOSFET selection, notice
that the maximum drain current is temperature dependant.
Most data sheets include a table or graph of the maximum
rated drain current vs temperature.
The maximum V
DS
should be selected to be higher than the
maximum input supply voltage (including transient) for both
MOSFETs. The signals driving the gates of the switching
MOSFETs have a maximum voltage of 5V with respect to the
source. During start-up and recovery conditions, the gate drive
signals may be as low as 3V. To ensure that the LT3741 recovers
properly, the maximum threshold should be less than 2V. For
a robust design, select the maximum V
GS
greater than 7V.
Power losses in the switching MOSFETs are related to the
on-resistance, R
DS(ON)
; the transitional loss related to the gate
resistance, R
G
; gate-to-drain capacitance, Q
GD
and gate-to-
source capacitance, Q
GS
. Power loss to the on-resistance is an
Ohmic loss, I
2
R
DS(ON)
, and usually dominates for input voltages
less than ~15V. Power losses to the gate capacitance dominate
for voltages greater than ~12V. When operating at higher input
voltages, efficiency can be optimized by selecting a high side
MOSFET with higher R
DS(ON)
and lower C
GD
. The power loss
in the high side MOSFET can be approximated by:
P
LOSS
= (ohmic loss) + (transition loss)
P
LOSS
≈
V
O
( )
V
IN
•I
O
2
R
DS(ON)
• ρ
T
⎛
⎝
⎜
⎞
⎠
⎟
+
V
IN
•I
OUT
5V
⎛
⎝
⎜
⎞
⎠
⎟
• Q
GD
+ Q
GS
( )
• 2•R
G
+R
PU
+R
PD
( )
( )
• f
S
⎛
⎝
⎜
⎞
⎠
⎟
where r
T
is a temperature-dependant term of the MOSFET’s
on-resistance. Using 70°C as the maximum ambient operat-
ing temperature, r
T
is roughly equal to 1.3. R
PD
and R
PU
are the LT3741 high side gate driver output impedance,
1.3Ω and 2.3Ω respectively.
A good approach to MOSFET sizing is to select a high
side MOSFET, then select the low side MOSFET. The trade-
off between R
DS(ON)
, Q
G
, Q
GD
and Q
GS
for the high side
MOSFET is shown in the following example. V
O
is equal
to 4V. Comparing two N-channel MOSFETs, with a rated
V
DS
of 40V and in the same package, but with 8× different
R
DS(ON)
and 4.5× different Q
G
and Q
GD
:
M1: R
DS(ON)
= 2.3mΩ, Q
G
= 45.5nC,
Q
GS
= 13.8nC, Q
GD
= 14.4nC , R
G
= 1Ω
M2: R
DS(ON)
= 18mΩ, Q
G
= 10nC,
Q
GS
= 4.5nC, Q
GD
= 3.1nC , R
G
= 3.5Ω
Power loss for both MOSFETs is shown in Figure 4. Observe
that while the R
DS(ON)
of M1 is eight times lower, the power
loss at low input voltages is equal, but four times higher
at high input voltages than the power loss for M2.
Power loss within the low side MOSFET is almost entirely
from the R
DS(ON)
of the FET. Select a low side FET with
the lowest R
DS(ON)
while keeping the total gate charge Q
G
to 30nC or less.
Another power loss related to switching MOSFET selection
is the power lost to driving the gates. The total gate charge,
Q
G
, must be charged and discharged each switching cycle.
The power is lost to the internal LDO within the LT3741.
The power lost to the charging of the gates is:
P
LOSS_LDO
≈ (V
IN
– 5V) • (Q
GLG
+ Q
GHG
) • f
S
where Q
GLG
is the low side gate charge and Q
GHG
is the
high side gate charge.
Whenever possible, utilize a switching MOSFET that
minimizes the total gate charge to limit the internal power
dissipation of the LT3741.
applicaTions inFormaTion