Datasheet

LT3014B
9
3014bfa
APPLICATIONS INFORMATION
Continuous operation at large input/output voltage dif-
ferentials and maximum load current is not practical
due to thermal limitations. Transient operation at high
input/output differentials is possible. The approximate
thermal time constant for a 2500sq mm 3/32" FR-4 board
with maximum topside and backside area for one ounce
copper is 3 seconds. This time constant will increase as
more thermal mass is added (i.e. vias, larger board, and
other components).
For an application with transient high power peaks, average
power dissipation can be used for junction temperature
calculations as long as the pulse period is signifi cantly less
than the thermal time constant of the device and board.
Calculating Junction Temperature
Example 1: Given an output voltage of 5V, an input volt-
age range of 24V to 30V, an output current range of 0mA
to 20mA, and a maximum ambient temperature of 50°C,
what will the maximum junction temperature be?
The power dissipated by the device will be equal to:
I
OUT(MAX)
• (V
IN(MAX)
– V
OUT
) + (I
GND
• V
IN(MAX)
)
where:
I
OUT(MAX)
= 20mA
V
IN(MAX)
= 30V
I
GND
at (I
OUT
= 20mA, V
IN
= 30V) = 0.55mA
So:
P = 20mA
• (30V – 5V) + (0.55mA
• 30V) = 0.52W
The thermal resistance for the DFN package will be in the
range of 40°C/W to 62°C/W depending on the copper
area. So the junction temperature rise above ambient will
be approximately equal to:
0.52W
• 50°C/W = 26°C
The maximum junction temperature will then be equal to
the maximum junction temperature rise above ambient
plus the maximum ambient temperature or:
T
JMAX
= 50°C + 26°C = 76°C
Example 2: Given an output voltage of 5V, an input voltage
of 48V that rises to 72V for 5ms(max) out of every 100ms,
and a 5mA load that steps to 20mA for 50ms out of every
250ms, what is the junction temperature rise above ambi-
ent? Using a 500ms period (well under the time constant
of the board), power dissipation is as follows:
P1(48V in, 5mA load) = 5mA • (48V – 5V)
+ (100μA • 48V) = 0.22W
P2(48V in, 20mA load) = 20mA • (48V – 5V)
+ (0.55mA • 48V) = 0.89W
P3(72V in, 5mA load) = 5mA • (72V – 5V)
+ (100μA • 72V) = 0.34W
P4(72V in, 20mA load) = 20mA • (72V – 5V)
+ (0.55mA • 72V) = 1.38W
Operation at the different power levels is as follows:
76% operation at P1, 19% for P2, 4% for P3, and
1% for P4.
P
EFF
= 76%(0.22W) + 19%(0.89W) + 4%(0.34W)
+ 1%(1.38W) = 0.36W
With a thermal resistance in the range of 40°C/W to
62°C/W, this translates to a junction temperature rise
above ambient of 20°C.
Protection Features
The LT3014B incorporates several protection features
which make it ideal for use in battery-powered circuits. In
addition to the normal protection features associated with
monolithic regulators, such as current limiting and thermal
limiting, the device is protected against reverse-input volt-
ages, and reverse voltages from output to input.
Current limit protection and thermal overload protection
are intended to protect the device against current overload
conditions at the output of the device. For normal operation,
the junction temperature should not exceed 125°C.
The input of the device will withstand reverse voltages
of 80V. Current fl ow into the device will be limited to less
than 6mA (typically less than 100μA) and no negative
voltage will appear at the output. The device will protect
both itself and the load. This provides protection against
batteries which can be plugged in backward.
The ADJ pin can be pulled above or below ground by as
much as 7V without damaging the device. If the input is