Datasheet
LT1976/LT1976B
8
1976bfg
NC (Pins 1, 3, 5): No Connection. Pins 1, 3, 5 are
electrically isolated from the LT1976. They may be con-
nected to PCB traces to aid in PCB layout.
SW (Pin 2): The SW pin is the emitter of the on-chip power
NPN switch. This pin is driven up to the input pin voltage
during switch on time. Inductor current drives the SW pin
negative during switch off time. Negative voltage is clamped
with the external Schottky catch diode to prevent exces-
sive negative voltages.
V
IN
(Pin 4): This is the collector of the on-chip power NPN
switch. V
IN
powers the internal control circuitry when a
voltage on the BIAS pin is not present. High di/dt edges
occur on this pin during switch turn on and off. Keep the
path short from the V
IN
pin through the input bypass
capacitor, through the catch diode back to SW. All trace
inductance on this path will create a voltage spike at switch
off, adding to the V
CE
voltage across the internal NPN.
BOOST (Pin 6): The BOOST pin is used to provide a drive
voltage, higher than the input voltage, to the internal
bipolar NPN power switch. Without this added voltage, the
typical switch voltage loss would be about 1.5V. The
additional BOOST voltage allows the switch to saturate
and its voltage loss approximates that of a 0.2Ω FET
structure, but with much smaller die area.
C
T
(Pin 7): A capacitor on the C
T
pin determines the amount
of delay time between the PGFB pin exceeding its thresh-
old (V
PGFB
) and the PG pin set to a high impedance state.
When the PGFB pin rises above V
PGFB
, current is sourced
from the C
T
pin into the external capacitor. When the volt-
age on the external capacitor reaches an internal clamp
(V
CT
), the PG pin becomes a high impedance node. The
resultant PG delay time is given by t = C
CT
• V
CT
/I
CT
. If the
voltage on the PGFB pin drops below V
PGFB
, C
CT
will be
discharged rapidly to 0V and PG will be active low with a
200μA sink capability. If the C
T
pin is clamped (Power Good
condition) during normal operation and SHDN is taken low,
the C
T
pin will be discharged and a delay period will occur
when SHDN is returned high. See the Power Good section
in Applications Information for details.
GND (Pins 8, 17): The GND pin connection acts as the
reference for the regulated output, so load regulation will
suffer if the “ground” end of the load is not at the same
voltage as the GND pin of the IC. This condition will occur
when load current or other currents flow through metal
paths between the GND pin and the load ground. Keep the
path between the GND pin and the load ground short and
use a ground plane when possible. The GND pin also acts
as a heat sink and should be soldered (along with the
exposed leadframe) to the copper ground plane to reduce
thermal resistance (see Applications Information).
UU
U
PI FU CTIO S
TYPICAL PERFOR A CE CHARACTERISTICS
UW
LT1976 Step Response
V
OUT
100mV/DIV
I
OUT
500mA/DIV
V
IN
= 12V TIME (1ms/DIV) 1976 G18
V
OUT
= 3.3V
C
OUT
= 47μF
I
DC
= 250mA
0A
1A