Datasheet

ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Rev. J | Page 52 of 107
SD VCR FF/RW SYNC
Subaddress 0x82, Bit 5
In DVD record applications where the encoder is used with a
decoder, the VCR FF/RW sync control bit can be used for non-
standard input video, that is, in fast forward or rewind modes.
In fast forward mode, the sync information at the start of a new
field in the incoming video usually occurs before the correct
number of lines/fields is reached. In rewind mode, this sync
signal usually occurs after the total number of lines/fields is
reached. Conventionally, this means that the output video has
corrupted field signals because one signal is generated by the
incoming video and another is generated when the internal
line/field counters reach the end of a field.
When the VCR FF/RW sync control is enabled (Subaddress 0x82,
Bit 5), the line/field counters are updated according to the
incoming
VSYNC
signal and when the analog output matches
the incoming
VSYNC
signal. This control is available in all
slave-timing modes except Slave Mode 0.
VERTICAL BLANKING INTERVAL
Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
accept input data that contains vertical blanking interval (VBI)
data (such as CGMS, WSS, VITS) in SD, ED, and HD modes.
If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD; Subaddress
0x83, Bit 4 for SD), VBI data is not present at the output and the
entire VBI is blanked. These control bits are valid in all master
and slave timing modes.
For the SMPTE 293M (525p) standard, VBI data can be inserted
on Line 13 to Line 42 of each frame or on Line 6 to Line 43 for
the ITU-R BT.1358 (625p) standard. VBI data can be present on
Line 10 to Line 20 for NTSC and on Line 7 to Line 22 for PAL.
In SD Timing Mode 0 (slave option), if VBI is enabled, the
blanking bit in the EAV/SAV code is overwritten. It is possible
to use VBI in this timing mode as well.
If CGMS is enabled and VBI is disabled, the CGMS data is,
nevertheless, available at the output.
SD SUBCARRIER FREQUENCY CONTROL
Subaddress 0x8C to Subaddress 0x8F
The ADV7390/ADV7391/ADV7392/ADV7393 are able to
generate the color subcarrier used in CVBS and S-Video (Y-C)
outputs from the input pixel clock. Four 8-bit registers are used
to set up the subcarrier frequency. The value of these registers is
calculated using the following equation:
32
2
MHz27
×
=
linevideooneincyclesclockofNumber
linevideooneinperiodssubcarrierofNumber
RegisterFrequencySubcarrier
where the sum is rounded to the nearest integer.
For example, in NTSC mode:
569408543
2
1716
5.227
32
=×
=ValueRegisterSubcarrier
where:
Subcarrier Register Value = 569408543d = 0×21F07C1F
SD F
SC
Register 0: 0x1F
SD F
SC
Register 1: 0x7C
SD F
SC
Register 2: 0xF0
SD F
SC
Register 3: 0x21
Programming the F
SC
The subcarrier frequency register value is divided into four F
SC
registers as shown in the previous example. The four subcarrier
frequency registers must be updated sequentially, starting with
Subcarrier Frequency Register 0 and ending with Subcarrier
Frequency Register 3. The subcarrier frequency updates only
after the last subcarrier frequency register byte is received by
the ADV7390/ADV7391/ADV7392/ADV7393. The SD input
standard autodetection feature must be disabled.
Typical F
SC
Values
Table 41 outlines the values that should be written to the
subcarrier frequency registers for NTSC and PAL B/D/G/H/I.
Table 41. Typical F
SC
Values
Subaddress Description NTSC PAL B/D/G/H/I
0x8C F
SC
0 0x1F 0xCB
0x8D F
SC
1 0x7C 0x8A
0x8E F
SC
2 0xF0 0x09
0x8F F
SC
3 0x21 0x2A
SD NONINTERLACED MODE
Subaddress 0x88, Bit 1
The ADV7390/ADV7391/ADV7392/ADV7393 support an SD
noninterlaced mode. Using this mode, progressive inputs at
twice the frame rate of NTSC and PAL (240p/59.94 Hz and
288p/50 Hz, respectively) can be input into the ADV7390/
ADV7391/ADV7392/ADV7393. The SD noninterlaced mode
can be enabled using Subaddress 0x88, Bit 1.
A 27 MHz clock signal must be provided on the CLKIN pin.
Embedded EAV/SAV timing codes or external horizontal and
vertical synchronization signals provided on the
HSYNC
and
VSYNC
pins can be used to synchronize the input pixel data.
All input configurations, output configurations, and features
available in NTSC and PAL modes are available in SD noninter-
laced mode. For 240p/59.94 Hz input, the ADV7390/ADV7391/
ADV7392/ADV7393 should be configured for NTSC operation
and Subaddress 0x88, Bit 1 should be set to 1.
For 288p/50 Hz input, the ADV7390/ADV7391/ADV7392/
ADV7393 should be configured for PAL operation and
Subaddress 0x88, Bit 1 should be set to 1.
Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.