L-force Runtime Software Ä.
9400 Technology applications | Electronic gearbox Overview of the technical documentation for Servo Drives 9400 Overview of the technical documentation for Servo Drives 9400 Project planning, selecting & ordering Legend: 9400 Hardware Manual Printed documentation Catalogue / electronic catalogue (DSC - Drive Solution Catalogue) Online documentation (PDF/Engineer online help) Mounting & wiring Abbreviations used: MA 9400 StateLine/HighLine BA Operating Instructions MA for communication
9400 Technology applications | Electronic gearbox Contents Contents 1 About this documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1 Conventions used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Definition of notes used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9400 Technology applications | Electronic gearbox Contents 4 5.3 Selection of master value source and output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 Master value source: Virtual master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 Master value source: Digital frequency input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 Master value source: Bus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9400 Technology applications | Electronic gearbox About this documentation 1 About this documentation This documentation contains information about the technology application "Electronic gearbox" for the Servo Drives 9400 series. Note! This documentation supplements the mounting instructions supplied with the controller, the hardware manual and the software manual for the controller.
9400 Technology applications | Electronic gearbox About this documentation Conventions used 1.1 Conventions used This documentation uses the following conventions to distinguish between different types of information: Type of information Writing Examples/notes Numbers Decimal separator Point The decimal point is always used. Example: 1234.56 Text Program name »« Window pane Italics The Message window... / The Options dialog box... Control element Bold The OK button... / The Copy command...
9400 Technology applications | Electronic gearbox About this documentation Definition of notes used 1.
9400 Technology applications | Electronic gearbox Brief description 2 Brief description The technology application "Electronic gearbox" serves to implement a synchronism with adjustable stretching ratio between the drives in the system. The ratio can be freely adjusted, the values are input in the form of a fraction (numerator/denominator) with 32 bit resolution. The master value can be specified either by a "Virtual master", or via a bus system or the digital frequency extension module.
400 Technology applications | Electronic gearbox Brief description Required license/delivery License stage Motion Control HighLevel or higher required. The technology application can be selected in the »Engineer« application catalog. EDS94TA10030xxxx EN 1.
9400 Technology applications | Electronic gearbox Introduction Synchronisation of the drives via a master angle 3 Introduction The following subchapters provide information on the electrical shaft. 3.1 Synchronisation of the drives via a master angle By coupling the drives via a master angle the positions are firmly allocated to each other like a mechanical shaft.
9400 Technology applications | Electronic gearbox Introduction Virtual master/real master 3.2 Virtual master/real master Virtual master Virtual master / Slave 1 X10: DFout i d In an interconnection, a drive takes over the task of the (virtual) master and is the first slave drive at the same time. The master value created in the TA by the "Virtual master" function is transmitted via a bus system or the digital frequency output to the other slave drives.
9400 Technology applications | Electronic gearbox Introduction Transmission of the master angle 3.
9400 Technology applications | Electronic gearbox Introduction Master or actual value transfer? Cascade structure Each drive obtains its own master value/master angle which is created or merely prepared through the upstream drive. 3.6 Master or actual value transfer? Master value transmission The master value transfer results in a much quieter machine running. The mark corrections, superimposed control functions and disturbances of the drive, however, do not affect the system.
9400 Technology applications | Electronic gearbox Introduction Functions with synchronisation via the electrical shaft 3.
9400 Technology applications | Electronic gearbox Introduction Application examples 3.9 Application examples 3.9.1 Electronic gearbox with virtual master System bus Master/Slave i1 d1 v R1 Slave i2 d2 v R2 v n Virtual master (and slave 1) o Slave 2 p Electrical shaft, implemented here via system bus (CAN). [3-3] 3.9.
9400 Technology applications | Electronic gearbox Introduction Application examples 3.9.3 Electronic gearbox as cascade The technology application "Electronic gearbox" is often operated as cascade since changes of speed/gearbox ratio of an upstream drive also have an effect on the subsequent drive. Typical applications are, for instance, stretching machines, wire drawing machines and roller mills. There is no position reference between tool and material.
9400 Technology applications | Electronic gearbox Introduction Application examples 3.9.4 Tighten the web via trimming function with cascade In case a clearance has developed, the web must be "tightened" again. Only then the machine can be accelerated again via the master. The subsequent slave (cascade structure) must run along in the set ratio. Thus, the trimming function acts directly before or after the stretching factor.
9400 Technology applications | Electronic gearbox Introduction Application examples 3.9.5 Relative synchronism with mark synchronisation and virtual master System bus Master/Slave Slave i1 d1 i2 v R1 Slave d2 a2 i3 v R2 d3 a3 v R3 v n Virtual master (and slave 1) o Slave 2 p Slave 3 q Electrical shaft, implemented here via system bus (CAN).
9400 Technology applications | Electronic gearbox Introduction Application examples 3.9.6 Relative synchronism with mark synchronisation and real master System bus Master/Slave i1 d1 v R1 i2 d2 Slave i3 v R2 a2 d3 a3 v R3 v n Real master/slave 1 (digital frequency extension module required) o Slave 2 p Electrical shaft, implemented here via system bus (CAN).
9400 Technology applications | Electronic gearbox Short setup 4 Short setup Note! The electrical shaft can be implemented with a bus system as e.g. system bus (CAN) or Ethernet Powerlink or via digital frequency transmission. With regard to the configuration of the digital frequency extension module in the controller, two variants of technology applications are available in the »Engineer« application catalog.
9400 Technology applications | Electronic gearbox Short setup Application example 4.1 Application example In the application example used for short setup, the technology application "Electronic gearbox" is operated as cascade since changes of speed/gearbox ratio of an upstream drive also have an effect on the subsequent drive. Typical applications are, for instance, stretching machines, wire drawing machines and roller mills. There is no position reference between tool and material.
9400 Technology applications | Electronic gearbox Short setup Connection diagram 4.2 Connection diagram K1 L1 L2 L3 N PE F4 O F1...F3 K1 I Z1 J RB L1 L2 SB 24E GE K1 L3 +UG -UG + E94AZPxxxxx X100 X2 MXI1 GA AO1 AO2 A1+ A1- X3 A1A1R A2+ A2GO 24O DO1 X4 DO2 DO3 DO4 Controller inhibit Quick stop Homing switch Close clutch Reset error E94ASxExxxx GI RFR DI1 DI2 DI3 X5 DI4 DI5 DI6 DI7 DI8 X9 X10 X106 X105 Rb1 Rb2 T1 T2 MXI2 E94AYFLF X107 U V W + X7 BD1 BD2 RB EYF...
9400 Technology applications | Electronic gearbox Short setup Connection diagram K2 L1 L2 L3 N PE F8 O F5...F7 K2 I Z2 J RB L1 L2 SB 24E GE K2 L3 +UG -UG + E94AZPxxxxx X100 X2 MXI1 GA AO1 AO2 A1+ A1- X3 A1A1R A2+ A2GO 24O DO1 X4 DO2 DO3 DO4 E94ASxExxxx GI RFR DI1 DI2 DI3 X5 DI4 DI5 DI6 DI7 DI8 Controller inhibit Quick stop Homing switch Close clutch Reset error X9 X10 X106 X105 Rb1 Rb2 T1 T2 MXI2 E94AYFLF X107 U V W + X7 BD1 BD2 RB EYF...
9400 Technology applications | Electronic gearbox Short setup Connection diagram 24 Designation Component E94ASxExxxx 9400 Single Drive servo axis module E94AZPxxxxx Mounting backplane E94AYFLF Digital frequency extension module (in module slot MXI1) K1, K2 Mains contactor F1 ... F8 Fuses Z1, Z2 Mains filter/RFI filter (option) HF-shield termination through large-surface connection to functional earth EYF...
9400 Technology applications | Electronic gearbox Short setup Step 1: Creating a project 4.3 Step 1: Creating a project Tip! Since the components of the master and slave axis are identical in the application example, you can use the copy&paste function to create the project in the »Engineer«: • In the first step, only insert the master drive axis. • Then, parameterise the technology application "Electronic gearbox" for the master drive.
9400 Technology applications | Electronic gearbox Short setup Step 2: Parameterising the application 4.4 Step 2: Parameterising the application For parameterising the application in the »Engineer«, use the Application parameters tab which will be displayed by default when selecting the controller in the project view: 1. Select the mains voltage (C00173). 2. Click Electronic gearbox to change to the dialog level Overview Electronic gearbox for further parameter setting. 26 L EDS94TA10030xxxx EN 1.
9400 Technology applications | Electronic gearbox Short setup Step 2: Parameterising the application Electronic gearbox Go to dialog: Overview Electronic gearbox 1. Select the synchronism ratio between master and slave drive: – Stretch factor numerator (C03000) – Stretch factor denominator (C03001) 2. Click Machine parameters to change to the dialog level Overview Electronic gearbox Machine parameters. EDS94TA10030xxxx EN 1.
9400 Technology applications | Electronic gearbox Short setup Step 2: Parameterising the application Machine parameters Go to dialog: Overview Electronic gearbox Machine parameters 1. Set gearbox ratio for the motor in the form of a quotient (numerator and denominator): i2 = 12.612 = 12612/1000 – Numerator (C02520) = 12612 – Denominator (C02521) = 1000 2. Set the same gearbox ratio for the encoder on the load side: – Numerator (C02522) = 12612 – Denominator (C02523) = 1000 3. Set feed constant (C02524).
9400 Technology applications | Electronic gearbox Short setup Step 2: Parameterising the application Master value processing Go to dialog: Overview Electronic gearbox Master value processing Note! All controllers in the network must have the same master value processing settings! 1. Set feed constant (C03932). – For the master value: Vk = d1 * π = 471.2389 mm 2. Set the selection "mm" as path unit (C03933). 3.
9400 Technology applications | Electronic gearbox Short setup Step 3: Adding a slave axis to the project 4.5 Step 3: Adding a slave axis to the project Use the copy&paste function in the project view for not having to enter all settings for the slave axis once again: 1. Copy the master axis in the project view. – For this, select the master axis, open the context menu (right mouse button) ,and click Copy: 2. Paste the copy of the master axis into the project view.
9400 Technology applications | Electronic gearbox Short setup Step 3: Adding a slave axis to the project 4. Rename the copy of the controller. – The Ambiguous name dialog box appears once again for the copied controller because all controllers must have an unambiguous name in the project view. – Enter e.g. "9400 HighLine (slave)" as controller name. – Example project view in the »Engineer«: EDS94TA10030xxxx EN 1.
9400 Technology applications | Electronic gearbox Short setup Step 4: Transferring applications to the controllers 4.6 Step 4: Transferring applications to the controllers Note! The transferred application is always stored in the first application memory location in the memory module of the controller. The preinstalled technology applications on the following memory locations are still available. 1. 2. 32 Update devices. – Set the checkmark in the control field Recreate all.
9400 Technology applications | Electronic gearbox Short setup Step 5: Controlling applications via terminals 4.7 Step 5: Controlling applications via terminals Terminal assignment Terminal Assignment (Lenze setting) X5 RFR Controller enable DI1 Quick stop • If DI1 is set to LOW level, the drive is decelerated to standstill within the deceleration time set for the quick stop function independent of the setpoint selection.
9400 Technology applications | Electronic gearbox Short setup Using the "Virtual master" function 4.8 Using the "Virtual master" function Instead of a real master, you can also use a "virtual master" for operating the electronic gearbox. In this case, one drive in the network acts both as a (virtual) master and the first slave drive.
9400 Technology applications | Electronic gearbox Short setup Using the "Virtual master" function Go to dialog: Overview Virtual master 1. Set control input Activate master function to TRUE. – For this, click the white button, go to the I/O configuration for... dialog box in the Constants tab and activate TRUE. 2. Assign control input VMas - start continuous operation e.g. to digital input DI8. – For this, click the white button, go to the I/O configuration for...
9400 Technology applications | Electronic gearbox Parameter setting & configuration Basic signal flow 5 Parameter setting & configuration 5.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Machine parameters 5.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Machine parameters 5.2.1 Master axis (master shaft) For scaling and imaging the master value in the application, the machine parameters of the higher-level drive (master shaft) must be set. Note! When setting (scaling) the electrical shaft, ensure that the ratio and encoder constants are identical for all drives in the system. The reference to the scaling of the master drive is sensible.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Machine parameters Tip! Setting the cycle (C03938) only is required if the selection "Modulo" is set as traversing range (C02528). For operation with a virtual master the following setting of the gearbox ratio is recommended to achieve a good resolution of the guiding angle/master value: • Numerator (C03930) = 100 • Denominator (C03931) = 1 5.2.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Machine parameters Example of determining the machine parameters for the slave axis 1. Set gearbox ratio for the motor in the form of a quotient (numerator and denominator): i2 = 12.612 = 12612/ 1000 – Numerator (C02520) = 12612 – Denominator (C02521) = 1000 i2 = 12.612 d2 = 200 mm 2. Set the same gearbox ratio for the position encoder: – Numerator (C02522) = 12612 – Denominator (C02523) = 1000 3.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Selection of master value source and output 5.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Selection of master value source and output 5.3.1 Master value source: Virtual master If the "Virtual master" is selected as master value source, the master value is created in the TA and transmitted via a bus system or the digital frequency output to the other slave drives.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Selection of master value source and output 5.3.2 Master value source: Digital frequency input To use the digital frequency input as master value source, the controller must be provided with digital frequency extension module (E94AYFLF). To ensure the integration of the extension module in the application, the TA "Electronic gearbox" must be used as technology application.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Operating mode "Electronic gearbox" 5.4 Operating mode "Electronic gearbox" In the "Electronic gearbox" (C03006 = "1") operating mode the drive follows the master value of the electrical shaft if the clutch is engaged.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Operating mode "Electronic gearbox" 5.4.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Operating mode "Electronic gearbox" 5.4.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Operating mode "Electronic gearbox" 5.4.3 Master value trimming Real master/ Virtual master Dv C03006 = 1 v M t Slave v n Master value with clutch o Master value with trimming [5-7] "Master value trimming" function in the signal flow (schematic diagram) This function serves to adjust the master value.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Operating mode "Electronic gearbox" 5.4.4 Setpoint conditioning Real master/ Virtual master Dv C03006 = 1 v M t Slave v n Master value with trimming o Actual value [5-8] "Setpoint conditioning" function in the signal flow (schematic diagram) This function is used for speed ratio between the master shaft and the machine axis.
9400 Technology applications | Electronic gearbox Parameter setting & configuration "Homing" mode 5.
9400 Technology applications | Electronic gearbox Parameter setting & configuration "Manual jog" mode 5.
9400 Technology applications | Electronic gearbox Parameter setting & configuration "Positioning" mode 5.
9400 Technology applications | Electronic gearbox Parameter setting & configuration "Positioning" mode Profile data record management For the profile data record management the FB L_PosProfileTable is used. This FB serves to file and manage up to four (travel) profiles and to "teach" target positions. A profile describes a motion request which can be implemented by the SB LS_Positioner into a rotary motion.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Following error monitoring 5.8 Following error monitoring In the Lenze setting the following error monitoring is active. Parameter setting: Tab Application parameters dialog level Overview Electronic gearbox Following error monitoring j n Switching threshold o Hysteresis Parameter Lenze setting Value Unit C03911 Switching threshold 1.0000 unit C03916 Hysteresis 0.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Quick stop 5.9 Quick stop v M t t Slave LS_Quickstop n If the quick stop function is deactivated, the drive is led to the selected setpoint again via the set acceleration time. LS_Limiter n STOP t The basic function "Quick stop" brakes the drive to standstill within the deceleration time set for the quick stop function after a corresponding request independent of the setpoint selection.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Limiter 5.10 Limiter v M t t Slave LS_Quickstop n The basic function "Limiter" monitors the travel range limits via limit switches and parameterised software limit positions and can lead the drive to defined limit ranges when being asked accordingly by the safety module.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Limiter Control inputs of the function Lenze setting 56 Signal configuration Control input (Multiplexer parameters) FALSE Positive limit switch C03150/1 FALSE Negative limit switch C03150/2 L EDS94TA10030xxxx EN 1.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Brake control 5.11 Brake control The basic function "Brake control" serves to the wear free control and monitoring of a holding brake. LS_Brake In the simplest case, an optionally available brake module is used. M Alternatively the holding brake can also be controlled and monitored via the digital inputs/outputs.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Brake control Control/setpoint inputs of the function Lenze setting Signal configuration Control/setpoint input FALSE Release brake C03165/1 FALSE Activate starting torque 2 C03165/2 FALSE Keep open brake at standstill C03165/3 FALSE Brake status signal C03165/4 FALSE Activate brake test C03165/5 FALSE Grind brake C03165/6 0 % Additional torque 58 (Multiplexer parameters) C03166 L EDS94TA100
9400 Technology applications | Electronic gearbox Parameter setting & configuration Signal configuration 5.12 Signal configuration 5.12.1 Drive and motor interface If required, the preset signal configuration of the control and setpoint inputs of the drive and motor interface can be easily reconfigured per parameter setting of the assigned multiplexer parameters.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Signal configuration 5.12.2 Output ports If required, the preset signal configuration of the output ports can be easily reconfigured per parameter setting of the assigned multiplexer parameters. Output port "LPortAxisOut1" The output port LPortAxisOut1 is intended for the connection with a following axis.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Signal configuration Output port "LPortStatus1" The output port LPortStatus1 is intended for the connection with a higher-level control.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Actual value and status signals 5.13 Actual value and status signals The following tables contain the Lenze assignment of the analog and digital outputs for the technology application "Electronic gearbox". The default signal configuration if required can be easily changed by parameterising the multiplexer parameters assigned.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Application error messages 5.14 Application error messages For the output of application-specific error messages an FB instance ApplicationError of the function block L_DevApplErr is available in the network. Via the 8 boolean inputs up to 8 different application error messages with parameterisable module ID, error ID and error response can be activated by the application.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Master value transmission via system bus (CAN) 5.15 Master value transmission via system bus (CAN) In the application example described in the chapter "Short setup", the master speed is transmitted via the digital frequency. ( 20) The following instructions describe step by step the proceeding for commissioning the electrical shaft via the system bus (CAN). Create project view 1. Start »Engineer«. 2.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Master value transmission via system bus (CAN) 5. Click Back to change to the previous dialog level. 6. Click virtual master to change to the dialog level Overview Electronic gearbox Virtual master. – Parameterise desired operating mode, speed and ramps. Parameterising slave(s) 1. Go to Project view and select the first slave controller . 2.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Master value transmission via system bus (CAN) Connect ports in the machine application 1. Go to Project view and select the machine application automatically with the insertion of the network. which has been inserted 2. Go to the Connections tab and connect the output port LPortAxisOut1 of the master controller with the input port LPortAxisIn1 of all slave controllers. Compile the project 1.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Master value transmission via system bus (CAN) 3. Go to Project view and select the first slave controller . 4. Go to the Application parameters and change to the dialog level Electronic gearbox Electronic gearbox Master value extrapolation. 5. Set the number of extrapolation cycles to the same value than the transmission time set before.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16 Parameterisable function blocks This subchapter lists all relevant parameterisable function blocks of the technology application and the corresponding parameters in alphabetical order. 5.16.1 ApplicationError Is an instance of Function L_DevApplErr Error handling Application error messages ( 63) Parameter Possible settings C05900 980 C05901/1...
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.2 ClutchElectricalShaft Is an instance of Function L_LdClutchV Virtual clutch ( 46) Parameter Possible settings C03665/1 0.010 s 130.000 Clutch in ramp • Acceleration ramp for synchronising to dnSpeedIn_s. • Initialisation: 1.000 s C03665/2 0.010 s 130.000 Decoupling ramp • Deceleration ramp for synchronising to dnSetSpeed_s. • Initialisation: 1.000 s C03665/3 0.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.3 ConvertElShaftMotor Is an instance of Function L_LdConvAxisV Transformation ratio of speed between two axes. Setpoint conditioning ( 48) Parameter Possible settings Information C03715 Coupling of measuring systems X and Y 0 Coupling via feed constants Lenze setting 1 Coupling via cycles 2 Free coupling 70 C03716/1 0 unit 214748.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.4 ElectricalShaftData Is an instance of Function L_SdSetAxisData Mapping of the machine parameters of the higher-level drive (master shaft). Master axis (master shaft) ( 38) Parameter Possible settings C03930 1 2147483647 Gearbox ratio - numerator • Initialisation: 1 C03931 1 2147483647 Gearbox ratio - denominator • Initialisation: 1 C03932 0.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.5 5.16.6 5.16.7 72 FollowError_Hysteresis Is an instance of Function L_SdSetPosition Conversion of the following error hysteresis selected in the real units of the machine via C03916 into a position in [increments]. Following error monitoring ( 53) Parameter Possible settings C03916 -214000.0000 C03917 Character string C03918 -2147483647 Information unit 214000.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.8 L_PosProfileTable1 Is an instance of Function L_PosProfileTable Storage and management of up to four travel profiles for the "positioning" mode. "Positioning" mode ( 51) Parameter Possible settings Information C03970/1...4 (subcode 1 ... 4 ≡ profile no. 1 ... 4) Positioning mode • For absolute positioning, the home position must be known.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks Parameter Possible settings Information C03977/1...4 Value is bit-coded: Touch probe configuration • The touch probe channels to be used are selected by setting the corresponding bits to "1". (subcode 1 ... 4 ≡ profile no. 1 ...
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks Parameter Possible settings Information C03983 DIS:bPosTeach • Display of input signal bPosTeach. 0 FALSE 1 TRUE C03984 0 Profile parameters are available. DIS:bBusy • Display of output signal bBusy. 1 Conversion active, no access to profile parameters at the moment. C03985 5.16.9 -2147483647 2147483647 State • Display of the bit-coded output signal dnState.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.10 MotionBusIn Is an instance of Function L_LdExtrapolate Optional extrapolation of the position information received via a bus system in order to compensate for larger bus transmission cycles.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.11 Trimming Is an instance of Function L_LdMPot Master value trimming ( 47) Parameter Possible settings C03685 -214000.0000 unit/t 214000.0000 Positive speed • Initialisation: 400.0000 units/t C03686 -214000.0000 unit/t 214000.0000 Negative speed • Initialisation: -200.0000 units/t C03687 0.001 s 130.000 Acceleration ramp • Initialisation: 1.000 s C03688 0.
9400 Technology applications | Electronic gearbox Parameter setting & configuration Parameterisable function blocks 5.16.12 VirtualMaster Is an instance of Function L_LdVirtualMaster "Virtual master" Master value source: Virtual master ( 42) Parameter Possible settings Information C03565 Virtual master operating mode 0 Continuous operation Lenze setting 1 Inching 2 Handwheel function 78 C03566 Character string Speed unit • Read only C03567 -214748.3647 unit/t 214748.
)(('%$&. Your opinion is important to us These instructions were created to the best of our knowledge and belief to give you the best possible support for handling our product. If you have suggestions for improvement, please e-mail us to: feedback-docu@Lenze.de Thank you for your support.
© 11/2009 ) Lenze Automation GmbH Grünstraße 36 D-40667 Meerbusch Germany Service +49 (0)21 32 / 99 04-0 Lenze Service GmbH Breslauer Straße 3 D-32699 Extertal Germany 00 80 00 / 24 4 68 77 (24 h helpline) ¬ +49 (0)21 32 / 7 21 90 ¬ +49 (0)51 54 / 82-11 12 | Lenze@Lenze.de | Service@Lenze.de Þ www.Lenze.com EDS94TA10030xxxx 13277848 EN 1.