G10 CMTS Hardware Guide Release 3.0 Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, CA 94089 USA 408-745-2000 www.juniper.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ii This product includes the Envoy SNMP Engine, developed by Epilogue Technology, an Integrated Systems Company. Copyright © 1986–1997, Epilogue Technology Corporation. All rights reserved. This program and its documentation were developed at private expense, and no part of them is in the public domain.
Table of Contents About This Manual Objectives ............................................................................................................ xiii Audience.............................................................................................................. xiv Document Organization....................................................................................... xiv Related Documents..............................................................................................
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • iv Data Packet Processing ..........................................................................32 Higher Layer Functions ...................................................................33 MAC Layer Functions ......................................................................34 Physical Layer Functions.................................................................
Part 2 Initial Installation Chapter 4 the Site .....................................................................................................67 Prepare Safety Precautions ................................................................................................68 Notices..................................................................................................................70 Power .........................................................................................................
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • vi Chapter 6 the Power and Perform Initial Configuration................123 Connect Power On the G10 CMTS ....................................................................................123 Power On and Configure the PC .........................................................................127 Perform Initial Software Configuration .......................................................
Chapter 9 Replacement Procedures ...............................................................................159 Power Supplies ...................................................................................................159 Remove Power Supplies ..............................................................................160 Fan Trays............................................................................................................162 Replace a Fan Tray ..................................
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • viii JUNOSg 3.
List of Figures List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40: Figure 41: Figure 42: Figure 43: Figure 44: Typi
List of Figures • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • x Figure 45: Figure 46: Figure 47: Figure 48: JUNOSg 3.0 G10 CMTS Hardware Guide Front Fan Tray Replacement ...........................................................164 Rear Fan Tray Replacement ............................................................165 DOCSIS Module Removal .................................................................
List of Tables List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Table 20: Table 21: Table 22: Table 23: Table 24: Table 25: Table 26: Table 27: Table 28: Table 29: Table 30: Table 31: Table 32: Table 33: Table 34: Table 35: Table 36: Table 37: Table 38: Table 39: Table 40: Table 41: Table 42: Table 43: Table 44: Chassis Physical Specifications ..................
List of Tables Table 45: Table 46: Table 47: Table 48: Table 49: Table 50: Table 51: Table 52: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • xii JUNOSg 3.0 G10 CMTS Hardware Guide Flap List Association to Potential Issues ............................................143 Local Event Log Headings Displayed.................................................145 Downstream RF Channel Transmission Characteristics ....................
About This Manual This chapter provides a high-level overview of the G10 CMTS Hardware Guide: ! Objectives on page xiii ! Audience on page xiv ! Document Organization on page xiv ! Related Documents on page xiv ! Documentation Conventions on page xv ! Contact Juniper Networks on page xvi ! Documentation Feedback on page xvi Objectives This manual explains the hardware installation and basic troubleshooting for the G10 CMTS and your HFC plant.
Audience • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • xiv Audience This manual is designed for network administrators who are installing and maintaining a G10 CMTS, or preparing a site for CMTS installation. It assumes that you have a broad understanding of HFC networks, networking principles, and network configuration. Any detailed discussion of these concepts is beyond the scope of this manual.
Documentation Conventions Documentation Conventions This manual uses the following text conventions: ! CMTS and CMTS component labels are shown in a sans serif font. In the following example, ETHERNET is the label for the Ethernet management port on the CMTS: The 10/100-Mbps Ethernet RJ-45 connector is used for out-of-band management of the CMTS and is labeled ETHERNET. ! Statements, commands, filenames, directory names, IP addresses, and configuration hierarchy levels are shown in a sans serif font.
Contact Juniper Networks • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • xvi Contact Juniper Networks For technical support, contact Juniper Networks at support@juniper.net, or at 1-888-314-JTAC (within the United States) or (+1) 408-745-9500 (from outside the United States). Documentation Feedback We are always interested in hearing from our customers.
Part 1 Product Overview ! System Overview on page 3 ! Hardware Component Overview on page 19 ! System Architecture Overview on page 57 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 JUNOSg 3.
Chapter 1 System Overview This chapter provides an overview of the G10 CMTS. ! System Description on page 3 ! Field-Replaceable Units (FRUs) on page 6 ! G10 CMTS Features and Functions on page 7 ! G10 CMTS Components on page 8 ! G10 CMTS Management on page 10 ! G10 CMTS Hardware Overview on page 10 System Description The JUNOSg software runs on the G10 cable modem termination system (CMTS) and provides both IP routing (Layer 3) and IEEE 802.
System Description • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Figure 1: Typical CMTS Location 4 JUNOSg 3.
System Description Figure 2: Headend Architecture Head End Broadcast Channels: Satellite, Fiber, Cable, Others Upconverter Analog Video Upconverter Digital Video Upconverter Other Combiner 54-750 MHz QAM Data Remote Dial-Up Access Server PSTN Operations System Support Upconverters Splitter Security & Access Control Backbone Transport Adapter, Switch, LAN, or Hub Backbone Network Local Server Facility Remote Server Facility Interactive Cable Gateway ATM E/O O/E Mod Network Terminatio
Field-Replaceable Units (FRUs) • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Field-Replaceable Units (FRUs) 6 JUNOSg 3.0 G10 CMTS Hardware Guide Field-replaceable units (FRUs) are CMTS components that can be replaced at the customer site. Replacing FRUs requires minimal CMTS downtime. A FRU can be ordered as a separate unit for replacement into the CMTS or for stocking spare parts. Following is an alphabetical list of G10 CMTS FRUs.
G10 CMTS Features and Functions G10 CMTS Features and Functions The G10 CMTS provides true multiservice support, including the ability to simultaneously support DOCSIS IP services and VoIP services. Functional Overview The G10 CMTS is usually connected directly to a Gigabit-class core router that is part of a multiple system operator’s (MSO) metropolitan core network.
G10 CMTS Components • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • G10 CMTS Components 8 JUNOSg 3.0 G10 CMTS Hardware Guide The G10 CMTS chassis employs front and rear modules that connect through a midplane. Most of the cable connections are available in the rear of the unit.
G10 CMTS Components Figure 3: G10 CMTS Components and Interfaces G10 CMTS Management Port Chassis Control Module (Slot 6) 32 Cable Interfaces ca-0/1/0 ca-0/1/1 ca-0/1/2 ca-0/1/3 DOCSIS Module ca-0/2/0 ca-0/2/1 ca-0/2/2 ca-0/2/3 DOCSIS Module ca-0/3/0 ca-0/3/1 ca-0/3/2 ca-0/3/3 DOCSIS Module ca-0/4/0 ca-0/4/1 ca-0/4/2 ca-0/4/3 DOCSIS Module ca-0/10/0 ca-0/10/1 ca-0/10/2 ca-0/10/3 DOCSIS Module ca-0/11/0 ca-0/11/1 ca-0/11/2 ca-0/11/3 DOCSIS Module ca-0/12/0 ca-0/12/1 ca-0/12/2 ca-0/12/3 DOCSI
G10 CMTS Management • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 10 G10 CMTS Management The G10 CMTS supports the following system management applications and tools: ! Command-Line Interface (CLI)—The CLI provides the most comprehensive controls and is instrumental for installation, configuration, troubleshooting, and upgrade tasks. ! SNMP—The CMTS can interact with SNMPv2c and SNMPv3-based Network Management Systems using DOCSIS 1.
G10 CMTS Hardware Overview Figure 4: Front View of Fully Configured Chassis ESD Strap Jack Cable Guide • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Power Power Power Fault Fault Fault Power Fault Power Fault Power Power Power Fault Fault Fault Power Supply Power Supply Ejector Rail Module Ejector Rail Eth0 Eth0 2 2 1 1 Air Intake Front Fan Tray LED Front Fan Tray LED DOCSIS Module Chassis Control Module NIC Module
G10 CMTS Hardware Overview • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 12 Figure 5: Front View of Partially Configured Chassis ESD Strap Jack Power Power Supply Faceplate Fault Power Fault Power Fault Power Fault Power Fault Power Fault Power Fault Power Fault Power Supply Bay Power Supply Power Supply Filler Panel Power Supply Faceplate Clip Midplane Air Management Module Card Guide Air Intake Faceplate JUNOSg 3.
G10 CMTS Hardware Overview Figure 6: Rear View of Fully Configured Chassis Cable Channel Air Exhaust AC Power Switch AC Power Transition Module AC Power Receptacle DS 0 DS 0 DS 0 DS 0 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US 1 US 2 DS 1 EXT FAULT INT FAULT OPERATIONAL POWER DS 0 DS 0 EXT FAULT INT FAULT OPERATIONAL POWER DS 0 DS 0 US 0 1 US 1 US 2 1 DS 1 DS 2 DS 3 US 0 DS 1 US 1 DS 2 US 2 DS 3 US 0 US 1
G10 CMTS Hardware Overview 14 Figure 7: Rear View of Partially Configured Chassis EXT FAULT INT FAULT OPERATIONAL POWER • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • DS 0 US 0 DS 1 US 1 DS 0 US 0 DS 1 US 1 DS 2 DS 2 US 2 Air Management Panel DS 3 1 US 3 US 3 Eth Eth0 Eth0 Eth1 JUNOSg 3.
G10 CMTS Hardware Overview HFC Connector Module or SIM 13 DOCSIS Module HFC Connector Module or SIM 12 DOCSIS Module HFC Connector Module or SIM 11 DOCSIS Module HFC Connector Module or SIM 10 DOCSIS Module NIC Access Module 9 NIC Module 8 Hard Disk Module 7 Chassis Control Module Hard Disk Module 6 Chassis Control Module NIC Access Module 5 NIC Module HFC Connector Module or SIM 4 DOCSIS Module HFC Connector Module or SIM 3 DOCSIS Module HFC Connector Module or SIM 2 DOCSIS
G10 CMTS Hardware Overview • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 16 Following is a brief explanation of each feature shown in Figure 4 through Figure 7: Front Features ! DOCSIS Module—Module that contains the Broadband Cable Processor ASIC and resides between the network-side interface (NSI) and the hybrid fiber/coax (HFC) interface.
G10 CMTS Hardware Overview Rear Features ! HFC Connector Module—Module that functions as the DOCSIS Module’s physical access to both the NSI and the HFC interfaces on the rear of the chassis. ! Switched I/O Module—Provides the same functions as an HFC Connector Module, but provides four additional upstream F-connectors for the HFC cabling. ! NIC Access Module—Module that provides the network connections between the NIC Modules and the HFC Connector Modules.
G10 CMTS Hardware Overview • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 18 JUNOSg 3.
Chapter 2 Hardware Component Overview This chapter provides an overview of the G10 CMTS hardware components: ! Chassis on page 19 ! DOCSIS Module on page 29 ! Chassis Control Module on page 37 ! NIC Module on page 42 ! Chassis Rear Modules on page 48 Chassis This section discusses the following characteristics of the G10 CMTS chassis components: ! Physical Characteristics on page 20 ! Card Cage and Midplane on page 21 ! Chassis Versions on page 25 ! Power Supplies on page 26 ! Power Transition Modules on p
Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 20 The major components of the G10 CMTS chassis are listed below and discussed in detail in the following chapters. ! DOCSIS Module—Up to eight modules, depending on planned customer capacity. ! HFC Connector Module—Up to eight modules, one for each DOCSIS Module. You cannot use an HFC Connector Module in a version 2 chassis if you are also using a NIC Module.
Chassis Table 2: Chassis Environmental Specifications Specification Value Ambient temperature range (operational) 0° to +40°C (0° to +104°F) Ambient temperature range (nonoperational) –35° to +60°C (–31° to +140°F) Altitude 60 m (197 ft.) below sea level to 1800 m (5,905 ft.) Relative humidity 10% to 90% non-condensing Vibration (operational) 5 Hz to 100 Hz and back to 5 Hz, at 0.1 g (0.
Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 22 The modules in the card cage use the P1 through P5 connectors of the midplane (see Figure 9 on page 23). The power supplies use connectors PS1 through PS10. Fan trays and power transition modules also connect to the midplane. Connectors P3 through P5 provide the pass-through interconnection between the modules in the front and rear of the chassis.
Chassis Figure 9: Midplane—Front and Rear Views Front View PS1 PS2 PS3 PS4 PS5 PS6 PS7 Pwr Supply Domain A 1 2 3 4 PS8 PS9 PS10 Power Supply Connectors Pwr Supply Domain B 5 6 7 8 9 10 11 12 13 P5 P4 P3 P2 P1 cPCI Bus Domain B cPCI Bus Domain A Fan Connectors Rear View Power Distribution Connectors 13 12 11 10 9 8 7 6 5 4 3 2 1 P5 P4 P3 Fan Connectors Hardware Component Overview • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 24 The midplane is partitioned into domains A and B as described in Table 5. This is required by the bus length restrictions stipulated in the cPCI specification. The power supplies and power distribution panels are also separated into domains A and B.
Chassis Figure 10: Midplane Domains Domain B 7 DOCSIS Module 6 DOCSIS Module 5 DOCSIS Module NIC Module 4 DOCSIS Module DOCSIS Module 3 Host Controller NIC Module DOCSIS Module 2 Comm Channel Chassis Control Module DOCSIS Module 1 Chassis Control Module DOCSIS Module Domain A 9 10 11 12 13 Midplane Slot Numbers (front view) Chassis Versions There are two versions of the chassis—version 1 and version 2.
Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 26 Power Supplies Power supplies are available in either AC or DC input voltage models. You must specify a model when ordering a G10 CMTS. The power supplies and the chassis are mechanically keyed to ensure that the same types are used together. If you order an AC version of the CMTS without power redundancy, the CMTS ships with five AC power supplies installed in domain A.
Chassis Figure 11: AC Power Supply Front Panel Input Range 100-240V 200W Hot Swap A fully populated chassis requires a nominal 1500 watts from an external power source. The components of the chassis require 1000 watts (maximum) from the power supplies. The aggregate power output from all voltage levels is 200 watts per power supply. Other electrical characteristics are provided in Table 7 on page 28. The CMTS components do not consume their maximum power at the same time.
Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 28 Table 7: Power Supply Specifications Power Supply Type Input Voltage Input Current Rating Output Voltage AC 90 to 240 VAC +5.0 VDC 25.0 A +3.3 VDC 35.0 A 2.5 A Nom (110 V, 70 percent efficiency) 47 to 63 Hz DC –36 to –72 VDC 6.0 A Nom (–48 VDC) Maximum Output Current +12.0 VDC 8.0 A –12.0 VDC 1.5 A +5.0 VDC 25.0 A +3.3 VDC 35.0 A +12.0 VDC 8.0 A –12.
DOCSIS Module Cooling and Fans The G10 CMTS has three fan trays. The trays install into the air intake chambers in the bottom of the chassis. Two trays install from the front and one tray installs from the rear. The front trays contain six large fans each and the rear tray contains six smaller fans. The total maximum power consumption of the three fan trays is 165 watts. Each tray has one LED. If a single fan fails, the LED illuminates red and a warning event is generated (if enabled).
DOCSIS Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 30 Figure 12: DOCSIS Module Front Panel Hot Swap JUNOSg 3.
DOCSIS Module Functional Characteristics The DOCSIS Module is fully compliant with CompactPCI Specification 2.0 R3.0, Oct.1, 1999. The module contains a 6 U (267 mm) x 340 mm card with an 8 HP (40 mm), double-wide front panel. Physical dimension are provided in Table 8 on page 36. The module installs from the front of the chassis and is hot-swappable. Each DOCSIS Module has a companion HFC Connector Module or SIM on the back side of the midplane (see Figure 8 on page 15).
DOCSIS Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 32 Figure 13: DOCSIS Module Block Diagram Packet, Scheduling, and Management Processing Devices Upconverter SDRAM I2C Dual PCI Bridge Memory Controller Flash Memory Modem Timer & NVRAM Broadband Cable Processor ASIC Mgmt Port Bridge Security Proc.
DOCSIS Module Figure 14: Packet Processing Layers Management Interface Higher Layers Network Layer Protocols De-encapsulator MPEG VoIP Packet Filtering Forwarding Data/IP Network-Side Interface Higher Layer Functions CMTS Management Upstream Downstream MAC Layer Frame Parser Classifier Packet Header Suppression Defragment Deconcatenate Decrypt Frame Generator Encryption Upstream Management/ Scheduler MPEG Groomer Downstream PHY Layer Management/ Control PMD Sublayer DOCSIS Data to/fro
DOCSIS Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 34 MAC Layer Functions The DOCSIS Module provides the following MAC layer functions: ! Classifier—Classifies upstream data frames into higher layer packet flows; classifies downstream frames into corresponding service flows using service flow IDs (SFIDs). ! Frame generator—Encapsulates downstream packets into DOCSIS frames.
DOCSIS Module Modem Management The DOCSIS Module exercises functional management over MAC layer and cable modem processes. MAC Layer Scheduling Management at the MAC layer includes the following scheduling functions: ! Queueing upstream requests. ! Transmission opportunity allocation based on MAC messages from cable modems. ! QoS scheduling requirements, including congestion control, which have priority over normal service flows. ! Prioritizing service flows for least delay.
DOCSIS Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 36 Physical and Electrical Characteristics This section describes the physical and electrical characteristics of the DOCSIS Module. See Table 8 through Table 10. The DOCSIS Module installs into the chassis from the front and spans two midplane connector columns. The module includes the RF upconverter and modem subassemblies.
Chassis Control Module LED Label Color Function 1 Red / Yellow / Green Red—Operating system image loaded for CPU0. Yellow—Control transferred to CPU0 operating system. Green—Operating system initialization completed successfully on CPU0. 2 Red / Yellow / Green Red—Operating system image loaded for CPU3. Yellow—Control transferred to CPU3 operating system. Green—Operating system initialization completed successfully on CPU3.
Chassis Control Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 38 Functional Characteristics The Chassis Control Module contains a 6 U (267 mm) x 340 mm card with a 4 HP (20 mm), single-wide front panel. The module installs from the front of the chassis and is hot-swappable. A Chassis Control Module must be installed in slot 6 or slot 7.
Chassis Control Module Figure 15: Chassis Control Module Front Panel • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Eth0 Hardware Component Overview 39
Chassis Control Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 40 Configuration, State, and Alarm Data The Chassis Control Module stores configuration files for all DOCSIS Modules and itself. When a module boots, the Chassis Control Module sends the appropriate configuration file to that module. Configuration files are ASCII text in a format readable by the command-line interface.
Chassis Control Module Table 11: Chassis Control Module Physical Dimensions Specification Value Height 233 mm (9.2 in.) module 262 mm (10.3 in., 6 U) front panel Width 20 mm (0.8 in.) (front panel width) Depth 340 mm (13.4 in.) (excluding front panel and cPCI connectors) Table 12: Chassis Control Module Connectors Connector Label Function COM RS-232 DB-9 connector for serial interface. Eth0 Fast Ethernet RJ-45 connector for CMTS management.
NIC Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 42 NIC Module The NIC Module provides a GBIC-based network-side interface for the G10 CMTS, as well as Ethernet switching functions. Four versions of this module are available: ! Single mode, long range—Optical interface for long haul network connections, up to 80 kilometers. ! Single mode, midrange—Optical interface for midrange network connections, up to 10 kilometers.
NIC Module Figure 16: NIC Module Front Panel • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • PULL G B I C GB0 GB1 G B I C CLK PWR RTM OK Hardware Component Overview 43
NIC Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 44 Functional Characteristics The NIC Module contains a 6U (267 mm) x 340 mm card with a 4 HP (20 mm), single-wide front panel. The module installs from the front of the chassis and is hot swappable. The NIC Module provides the network-side interface of the G10 CMTS.
NIC Module Table 17: Single-Mode, Long-Range GBIC Specifications Parameter Value Transmitter type Longwave laser, 1550 nm Range 80 Km Data rate (nominal) 1.0625 to 1.250 Gbps Average launch power -4 dBm min. -1 dBm max. Transmitter extinction ratio 9 dB min. Data format 8B / 10B Average receive power -25.5 dBm min. -1 dBm max.
NIC Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 46 Table 19: Multimode GBIC Specifications Parameter Value Transmitter type Shortwave laser, 850 nm Range 550 m Data rate (nominal) 1.0625 to 1.250 Gbps Average launch power (62.5 µm MMF) -9.5 dBm min. -5 dBm max. Transmitter extinction ratio 9 dB min. Data format 8B / 10B Average receive sensitivity -22 dBm typical -20.5 dBm max.
NIC Module Table 21: NIC Module LEDs LED Color Function Pull Red On—Module software is in a safe state; module can be removed. LED is on during power up and off during normal operation. 0 through 23 Green On—Successful link of the corresponding Ethernet interface. FLASHING—Activity on corresponding channel. LEDs are off during power up. GB0 GB1 Green On—Successful link of corresponding Gigabit Ethernet interface. LED is off during power up. CLK Green Not used.
Chassis Rear Modules • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 48 Chassis Rear Modules The rear modules, in general, are designed to locate the chassis cable connections on the back of the chassis rather than the front. The rear modules primarily distribute signals between the functional modules in front and the cabling in the rear.
Chassis Rear Modules Figure 17: NIC Access Module Front Panel EXT FAULT INT FAULT OPERATIONAL POWER • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 1 2 Hardware Component Overview 49
Chassis Rear Modules • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 50 HFC Connector Module The HFC Connector Module contains a 6 U (267 mm) x 80 mm card with an 8 HP (40 mm), double-wide rear panel. The module installs from the rear of the chassis and is hot-swappable. The HFC Connector Module has two RJ-45 Ethernet connectors carrying IP data to and from the network-side interface.
Chassis Rear Modules Figure 18: HFC Connector Module Rear Panel • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • DS 0 US 0 DS 1 US 1 DS 2 US 2 DS 3 US 3 Eth0 Eth1 Hardware Component Overview 51
Chassis Rear Modules 52 Figure 19: G10 CMTS Data Flow Hybrid Fiber/Coax 10/100BASE-T IP Data Upstream Downstream DOCSIS Module DOCSIS Ethernet Ethernet NIC Module NIC Access Module Upstream NetworkSide Interface Gigabit Ethernet IP Data Ethernet DOCSIS Module Downstream HFC Connector Module Downstream RF DOCSIS Frames in MPEG Stream HFC Connector Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • DOCSIS Midplane Up
Chassis Rear Modules Switched I/O Module The Switched I/O Module (SIM) contains a 6 U (267 mm) x 80 mm card with an 8 HP (40 mm), double-wide rear panel. The module installs from the rear of the chassis and is hot-swappable. The SIM has four RJ-45 Ethernet connectors, and four downstream F-connectors and eight upstream F-connectors for routing traffic to and from the HFC network (see Figure 20 on page 54). ! Fast Ethernet ports Eth0-B and Eth1-B are not used.
Chassis Rear Modules • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 54 Table 24: SIM Fast Ethernet Port LEDs LED Function Green On—Link is present. Off—Link is not present. Blinking—Activity on link. Amber On—100Base-T mode. Off—10Base-T mode. Figure 20: SIM Rear Panel JUNOSg 3.
Chassis Rear Modules Hard Disk Module The Hard Disk Module contains a 6 U (267 mm) x 80 mm card with a 4 HP (20 mm), single-wide rear panel. The module installs from the rear of the chassis and is hot-swappable. The Hard Disk Module contains the system nonvolatile memory implemented as a hard disk. There must be one Hard Disk Module for each Chassis Control Module. It installs opposite the Chassis Control Module in slot 6 or 7.
Chassis Rear Modules • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 56 Figure 21: Hard Disk Module Rear Panel Eth C O M JUNOSg 3.
Chapter 3 System Architecture Overview This chapter provides an overview of the G10 CMTS’s system architecture, discussing the following topics: ! JUNOSg Internet Software Overview on page 57 ! Data Path Processing on page 62 JUNOSg Internet Software Overview The JUNOSg software provides Internet Protocol (IP) routing software, as well as software for interface, cable, network, and chassis management. The software runs on the CMTS’s Routing Engine.
JUNOSg Internet Software Overview • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 58 Routing Engine Software Components The Routing Engine software consists of several software processes that control router functionality and a kernel that provides the communication among all the processes.
JUNOSg Internet Software Overview Routing and Forwarding Tables A primary function of the JUNOSg routing protocol process is to maintain the Routing Engine’s routing table and to determine the active routes to network destinations. It then installs these routes into the Routing Engine’s forwarding table. The JUNOSg kernel then copies this forwarding table to the Packet Forwarding Engine. The routing table stores routing information for all routing protocols running on the CMTS.
JUNOSg Internet Software Overview • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 60 Interface Process The JUNOSg interface process allows you to configure and control the physical interface devices and logical interfaces in the CMTS.
JUNOSg Internet Software Overview Tools for Accessing and Controlling the Software The primary means of accessing and controlling the JUNOSg software is the CLI. The CMTS provides two ports on the Chassis Control Module for connecting external management devices to the Routing Engine and hence to the JUNOSg software: ! Fast Ethernet management port (Eth0)—Connects the Routing Engine to a management LAN (or any other device that plugs into an Ethernet connection) for out-of-band management of the CMTS.
Data Path Processing • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 62 Data Path Processing This section describes the data path processing of the downstream and upstream traffic flows. Packets that enter the CMTS from the network-side interface (NSI) and are destined for the HFC network are processed through the downstream path.
Data Path Processing Upstream Data Path Following is a description of the flow of a packet through the upstream data path of a DOCSIS Module: 1. If you have configured and applied a subscriber management or IEEE 802.1 input filter, a packet received on a cable interface of a DOCSIS Module is evaluated based on the filter configuration and is either dropped or passed. 2.
Data Path Processing 64 Figure 22: G10 CMTS Data Flow DOCSIS Data HFC Connector Module or SIM Hybrid Fiber/Coax DOCSIS Data DOCSIS Module Midplane G10 CMTS JUNOSg 3.
Part 2 Initial Installation ! Prepare the Site on page 67 ! Install the CMTS on page 93 ! Connect the Power and Perform Initial Configuration on page 123 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 65
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 66 JUNOSg 3.
Chapter 4 Prepare the Site This chapter provides the installation site requirements and step-by-step procedures that we recommend in preparation for the installation of the G10 CMTS in the headend. The installation procedures described in this manual assume that the procedures and the checklist provided in this chapter have been successfully completed and approved by the user and Juniper Networks field engineers.
Safety Precautions • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 68 Safety Precautions During the preparation and installation of the G10 CMTS, we strongly recommend that you adhere to the precautions presented in this section to avoid physical injury due to lifting, moving, or rack mounting the CMTS. ! Only trained and certified personnel should be involved in the installation of the CMTS.
Safety Precautions ! Remove all jewelry that can act as a conductor of electricity such as watches, rings, bracelets, and necklaces. ! Prior to making any power connections, locate the emergency power-off switch and ensure that the path between where the G10 CMTS will be installed and the power-off switch is unobstructed.
Notices • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 70 ! All modules and power supplies are designed to smoothly slide into the G10 CMTS chassis using the card guides. Do not apply excessive force during the insertion of any assembly into the system. If resistance to insertion is encountered while installing any assembly, carefully remove it, realign its card edge with the chassis’ card guides, and reinsert it into the system.
Power This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Power The G10 CMTS can be configured with either AC or DC power supply modules. To support a fully-populated CMTS, the installation site must be able to source 1500 watts of input power.
Environment • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 72 DC Power The G10 CMTS requires a DC power source that operates within a voltage range of –36 to –75 VDC. Unlike the AC configuration, the DC power transition modules do not operate independently. Each DC power transition module supports the power supplies in both domains of the chassis.
Mounting Mounting The G10 CMTS can be mounted in a 19-inch EIA RS-310-C equipment rack or a 23-inch AT&T DATAPHONE equipment rack. You can install the CMTS into non-standard racks by using the additional rail mounting bracket holes in the CMTS. We recommend that you rack mount systems from the bottom up to maintain the lowest possible center of gravity of the entire rack with its equipment. We recommend that you use an equipment shelf or tray beneath the CMTS to support its weight.
Tools and Equipment Required for Installation • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 74 Tools and Equipment Required for Installation You need the following tools to complete the G10 CMTS installation: ! M2.5 Phillips torque screwdriver ! M2.
Coaxial Cable Requirements Coaxial Cable Requirements To achieve optimal RF performance and to minimize the potential damage of the F-connectors on the HFC Connector Modules and SIMs, we recommend that you use the coaxial cable types listed in Table 26. Table 26: Coaxial Cable Requirements Cable Type Diameter of Center Conductor RG-59/U 0.57 mm (0.022 in) RG-59 0.86 mm (0.034 in) RG-6 1.05 mm (0.041 in) You can use any of the cable types listed in Table 26 initially.
Characterization of Installation Site • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 76 Table 27: RF Plant/HFC Environment Characterization Parameter Value Plant architecture type ____ HFC ____ All Coax Number of optical links within HFC Distance between optical links within HFC ____ max ____ average Amplifier cascade depth from node ____ max ____ average Homes passed per node ____ max ____ average Total homes passed by instal
Characterization of Installation Site Table 28: Existing DOCSIS Service Characterization Parameter Value 1st DOCSIS Service Upstream RF bandwidth allocated ____ MHz (max) ____ MHz (min) Upstream modulation type ____ QPSK ____ 16QAM Upstream input level expected at CMTS ____ dBmV FEC enabled? If yes, FEC level parameters (T and K) ____ yes ____ no ____T ____ K Upstream measured C/N ____ dB Downstream RF bandwidth allocated ____ MHz (max) ____ MHz (min) Downstream modulation type ____ 64QAM __
Characterization of Installation Site • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 78 Table 29: Upstream CMTS Parameter Characterization Upstream Parameters Port 0 Port 1 Port 2 Port 3 ____ : 1 ____ : 1 ____ : 1 ____ : 1 Expected port input level ____ dBmV ____ dBmV ____ dBmV ____ dBmV Modulation type (where applicable) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QA
Characterization of Installation Site Upstream Parameters Port 0 Port 1 Port 2 Port 3 FEC enabled? If yes, FEC level parameters _____ yes _____ no _____ yes _____ no _____ yes _____ no _____ yes _____ no ____ T ____ K (CH 0) ____ T ____ K (CH 0) ____ T ____ K (CH 0) ____ T ____ K (CH 0) ____ T ____ K (CH 1) ____ T ____ K (CH 1) ____ T ____ K (CH 1) ____ T ____ K (CH 1) ____ T ____ K (CH 2) ____ T ____ K (CH 2) ____ T ____ K (CH 2) ____ T ____ K (CH 2) ____ T ____ K (CH 3) ____ T ____
Characterization of Installation Site • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 80 Table 30: Downstream CMTS Parameter Characterization Downstream Parameters Port 0 Port 1 Port 2 Port 3 DOCSIS Module #___ Node combining ratio per port ____ : 1 ____ : 1 ____ : 1 ____ : 1 Interface frequency allocated ____ MHz ____ MHz ____ MHz ____ MHz Modulation type _ 64QAM _256QAM _ 64QAM _256QAM _ 64QAM _256QAM _ 64QAM _256QAM
Characterization of Installation Site Table 31: Upstream Frequency Spectrum Utilization Frequency Description of Utilization Frequency 5 – 6 MHz 24 – 25 MHz 6 – 7 MHz 25 – 26 MHz 7 – 8 MHz 26 – 27 MHz 8 – 9 MHz 27 – 28 MHz 9 – 10 MHz 28 – 29 MHz 10 – 11 MHz 29 – 30 MHz 11 – 12 MHz 30 – 31 MHz 12 – 13 MHz 31 – 32 MHz 13 – 14 MHz 32 – 33 MHz 14 – 15 MHz 33 – 34 MHz 15 – 16 MHz 34 – 35 MHz 16 – 17 MHz 35 – 36 MHz 17 – 18 MHz 36 – 37 MHz 18 – 19 MHz 37 – 38 MHz 19 – 20 MHz 38 –
Summary Checklist • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 82 Summary Checklist Table 32 provides a summary checklist of the pre-installation requirements. You should complete and review this checklist with field engineers to ensure the installation site is prepared for installing the G10 CMTS.
Noise Measurement Methodology Noise Measurement Methodology This section describes the methodology for conducting average and peak upstream noise measurements. The procedures establish a consistent methodology for obtaining the requested information during the characterization of the installation site. We recommend you use the HP 8591C spectrum analyzer for taking these measurements.
Noise Measurement Methodology • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 84 Figure 23: Average Upstream Noise Measurement Example Peak Upstream Noise Measurement This section defines a procedure for taking the peak upstream noise measurements required as part of the RF plant and HFC environment characterization. We recommend that you take a sample of 10 percent of the nodes terminated at the installation site.
Additional Characterization Tables Figure 24: Peak Upstream Noise Measurement Example Additional Characterization Tables If the installation site supports more than two DOCSIS services, you can record the characterization of the additional services in Table 35. In addition, if the CMTS configuration includes more than one DOCSIS Module, you can use Table 36 and Table 37 to record the data.
Additional Characterization Tables • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 86 Table 35: Existing DOCSIS Service Characterization Parameter Value ____ DOCSIS Service Upstream RF bandwidth allocated ____ MHz (max) ____ MHz (min) Upstream modulation type ____ QPSK ____ 16QAM Upstream input level expected at CMTS ____ dBmV FEC enabled? If yes, FEC level parameters (T and K) ____ yes ____ no ____T ____ K Upstream measured C/
Additional Characterization Tables Table 36: Upstream CMTS Parameter Characterization Upstream Parameters Port 0 Port 1 Port 2 Port 3 ____ : 1 ____ : 1 ____ : 1 ____ : 1 Expected port input level ____ dBmV ____ dBmV ____ dBmV ____ dBmV Modulation type (where applicable) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH0) _ QPSK _ 16QAM (CH1) _ QPSK _ 16QAM (CH1) _ QPSK _ 16QAM (CH1) _ QPSK _ 16QAM (CH1) _ QPSK _ 16QAM (CH2) _ QPSK _ 16QAM (CH2) _ QPS
Additional Characterization Tables • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 88 Upstream Parameters Port 0 Port 1 Port 2 Port 3 FEC enabled? If yes, FEC level parameters _____ yes _____ no _____ yes _____ no _____ yes _____ no _____ yes _____ no ____ T ____ K (CH 0) ____ T ____ K (CH 0) ____ T ____ K (CH 0) ____ T ____ K (CH 0) ____ T ____ K (CH 1) ____ T ____ K (CH 1) ____ T ____ K (CH 1) ____ T ____ K (CH 1) ___
Verification of Shipping Cartons Table 37: Downstream CMTS Parameter Characterization Downstream Parameters Port 0 Port 1 Port 2 Port 3 Node combining ratio per port ____ : 1 ____ : 1 ____ : 1 ____ : 1 Interface frequency allocated ____ MHz ____ MHz ____ MHz ____ MHz Modulation type _ 64QAM _256QAM _ 64QAM _256QAM _ 64QAM _256QAM _ 64QAM _256QAM Output signal level (relative to analog video) ____ dB ____ dB ____ dB ____ dB Required interface output level ____ dBmV ____ dBmV ____
G10 CMTS Installation Checklist • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 90 G10 CMTS Installation Checklist Table 38 summarizes all the steps outlined in this document that are required to successfully install the G10 CMTS in the headend. We recommend that copies of this table be made and used to keep track of the installation status of each G10 CMTS.
G10 CMTS Installation Checklist Step Page Number Completion Status Install a Chassis Control Module and a Hard Disk Module Remove the air management module where the Chassis Control Module will be inserted page 108 Release the ejectors, align to the card guides, insert the Chassis Control Module, and close the ejectors Tighten the self-contained screws Remove the air management panel where the Hard Disk Module will be inserted Release the ejectors, align to the card guides, insert the Hard Disk Module,
G10 CMTS Installation Checklist • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 92 Step Page Number Connect to Power Sources Ensure that each power distribution rocker switch is OFF (AC only) page 119 Plug each power cord into the power receptacles (AC) or terminal blocks (DC) Close the retainer clips around the power cords (AC) or secure the DC ring lugs to the terminal blocks (DC) Plug the other ends of the power cords to their res
Chapter 5 Install the CMTS This chapter describes the complete installation procedure for the G10 CMTS. It is assumed that you have followed all safety precautions and procedures described in “Prepare the Site” on page 67 prior to performing the procedures presented in this chapter. We recommend that the entire installation process in this chapter be read prior to performing the actual G10 CMTS installation.
Ground the Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 94 ! Connect to Power Sources on page 119 Ground the Chassis Prior to rack mounting the G10 CMTS, you should install an earth ground strap on the chassis, particularly if the sides of the chassis will be inaccessible after it is rack mounted. Figure 6 on page 13 shows the location of the chassis ground nuts on the chassis.
Rack Mounting In general, when more than one piece of equipment is mounted into a rack, you should install the heaviest piece of equipment at the bottom of the rack. Each successive piece you install should be lighter than the piece immediately below it. For planning purposes, a minimally-populated G10 CMTS weighs approximately 80 lb (36 kg), and a fully-populated G10 CMTS weighs approximately 140 lb (64 kg). To rack mount the chassis, follow this procedure: 1.
Rack Mounting • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 96 Figure 25: Air Flow Through Chassis JUNOSg 3.
Rack Mounting Figure 26: Bottom of Chassis 18.6 in (472.6 mm) 17.3 in (439.4 mm) Front 5. When lifting the chassis, we recommend that you follow the safety precautions listed in the “Safety Precautions” on page 68. Using a lift (or at least three installers—one on the left, one on the right, and one in the front of the chassis), slowly lift and slide the G10 CMTS onto the equipment shelf.
Rack Mounting • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Figure 27: Lifting the Chassis 98 JUNOSg 3.
Rack Mounting Figure 28: Rack-Mounted Chassis • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Power Power Power Fault Fault Fault Power Fault Power Fault Power Power Power Fault Fault Fault Eth0 Eth0 2 2 1 1 Install the CMTS 99
Rack Mounting • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 100 Figure 29: Rack Fully Populated with Three G10 CMTS Chassis JUNOSg 3.
Install Power Supplies Install Power Supplies If you order an AC version of the CMTS without power redundancy, the CMTS ships with five AC power supplies installed in domain A. If you order the CMTS with power redundancy, the CMTS ships with 10 AC power supplies installed. DC versions of the CMTS are always shipped with 10 DC power supplies installed. To install an additional power supply, follow this procedure: 1.
Install Power Supplies • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 102 Figure 30: Power Supply Installation 1 JUNOSg 3.
Install a DOCSIS Module Install a DOCSIS Module The G10 CMTS chassis accommodates a total of eight DOCSIS Modules. The chassis is not shipped from the factory with any DOCSIS Modules installed into any card cage slots. All DOCSIS Modules that you order are packaged separately and must be installed at the headend after the G10 CMTS has been rack mounted.
Install a DOCSIS Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 104 6. Tighten the two retainer screws by applying 3 in-lb of torque to each screw. Figure 31: Air Management Module Removal 1 2 3 1 JUNOSg 3.
Install an HFC Connector Module or SIM Figure 32: DOCSIS Module Installation 2 1 2 Install an HFC Connector Module or SIM To install an HFC Connector Module or SIM, follow this procedure: 1. If applicable, remove the air management panel from the slot by loosening the two self-contained screws at the top and bottom of each panel. 2. Remove the module from its anti-static bag, being careful to avoid directly touching any component on the module.
Install an HFC Connector Module or SIM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 106 3. If the upper or lower ejector of the module is locked in the horizontal position, press upward or downward on the ejector release while simultaneously pulling the ejector away from the module faceplate. Each ejector should rest at approximately 45° away from its locked position. 4.
Install an HFC Connector Module or SIM Figure 33: HFC Connector Module Installation • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 1 DS 0 US 0 DS 1 US 1 DS 2 US 2 DS 3 US 3 0 Eth 1 Eth 2 Install the CMTS 107
Install a Chassis Control Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 108 Install a Chassis Control Module The G10 CMTS chassis accommodates a maximum of two Chassis Control Modules in slots 6 and 7. To install a Chassis Control Module, follow the same procedure described in “Install a DOCSIS Module” on page 103. Install a Hard Disk Module You must install a Hard Disk Module opposite each installed Chassis Control Module.
Cable an HFC Connector Module or SIM Cable an HFC Connector Module or SIM This section describes how to connect the four downstream and four upstream F-connector ports of an HFC Connector Module or SIM. This section also describes how to connect the two Fast Ethernet ports on an HFC Connector Module or SIM.
Cable an HFC Connector Module or SIM • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 110 One possible deployment scenario for the upstream is to attach one node per upstream port and to turn on one upstream interface per node. If one of the nodes reaches capacity due to high penetration or heavy usage of bandwidth-intensive services, you can provision another interface on that port.
Cable an HFC Connector Module or SIM When connecting nodes to the upstream ports of an HFC Connector Module or SIM, do not split a coaxial cable from one node and attach it to more than one upstream port. Doing so prevents you from using the complete features of a DOCSIS Module that are designed for supporting four separate nodes or four groups of nodes that are combined.
Cable an HFC Connector Module or SIM DS 0 DS 0 DS 0 DS A DS A DS 0 DS 0 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US B US C DS 1 DS C DS D US A US B US C DS B DS C DS D US A US B US C Eth1 Eth1 JUNOSg 3.
Cable a Chassis Control Module Cable a Chassis Control Module The Chassis Control Module contains a Fast Ethernet RJ-45 port labeled Eth0 on its front panel (see Figure 15 on page 39). This port is used for the management interface to the CMTS. To connect to the Chassis Control Module management port, follow this procedure: 1. Carefully thread the Ethernet cable into the cable channel from the rear of the chassis (see Figure 6 on page 13) until it extends through the opening of the power supply faceplate.
Cable a NIC Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 114 Figure 36: NIC Module Cabling – Front View Power Fault Power Fault Power Fault JUNOSg 3.
Cable a NIC Access Module Cable a NIC Access Module This section describes how to interconnect up to two NIC Access Modules to multiple HFC Connector Modules or SIMs. The procedure assumes that a NIC Module supports only the DOCSIS Modules installed in the same domain of the chassis. Therefore, if five or more DOCSIS Modules are installed in the system, two NIC Modules are needed to support them.
Cable a NIC Access Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 116 8. If you have reached this step in the procedure, at least five HFC Connector Modules or SIMs are installed in the G10 CMTS, and a second NIC Access Module and its corresponding cable are required to complete the interconnection procedure. If applicable, remove the protective cover that is inserted into the RJ-21 end of the NIC Access Module cable. 9.
Cable a NIC Access Module Figure 37: NIC Access Module Cable Connections • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • DS 0 DS 0 DS 0 DS 0 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US 1 US 2 DS 1 DS 2 DS 3 US 0 US 1 US 2 EXT FAULT INT FAULT OPERATIONAL POWER DS 0 DS 0 EXT FAULT INT FAULT OPERATIONAL POWER DS 0 US 0 US 1 US C DS 1 DS 1 DS 2 DS 3 US 0 US 1 US 2 DS 1 DS 2 DS 3
Cable a NIC Access Module • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 118 Table 39: NIC Access Module Wiring Plan NIC Access Module in Slot 5 NIC Access Module in Slot 9 NAM Cable / Port NAM Cable / Port Rear Module – Slot / Port Rear Module – Slot / Port Cable 1 / PORT 1 Reserved Cable 1 / PORT 1 Reserved Cable 1 / PORT 2 Reserved Cable 1 / PORT 2 Reserved Cable 1 / PORT 3 Reserved Cable 1 / PORT 3 Reserved Cable 1
Attach a PC to the Chassis Control Module Attach a PC to the Chassis Control Module You must directly connect a personal computer (PC) to the Chassis Control Module to perform the initial configuration of the G10 CMTS. Using the DB-9–to–DB-9 null modem serial cable supplied in the accessory kit, connect one end of the cable to the RS-232 DB-9 port labeled COM on the Chassis Control Module front panel (see Figure 15 on page 39) and connect the other end to the serial port on your PC.
Connect to Power Sources • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 120 4. Plug the male end of each 15 A power cord into independent power sources. Always use AC power sources that support the ground prong of the power cord. The G10 CMTS power supplies are autosensing which enables them for usage with 115 VAC or 230 VAC. Figure 38: AC Power Cord and Retainer Clip Power Cord Retainer Clip JUNOSg 3.
Connect to Power Sources DC Power Each DC power transition module in the G10 CMTS chassis contains a terminal block for connecting to a DC power source (see Figure 39 on page 122). Unlike the AC configuration, the DC power transition modules do not operate independently. Each DC power transition module supports the power supplies in both domains of the chassis. You must supply power from different circuits to domain A and domain B for power redundancy protection.
Connect to Power Sources • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 122 Figure 39: DC Power Transition Module JUNOSg 3.
Chapter 6 Connect the Power and Perform Initial Configuration It is assumed that you have followed the installation procedures described in “Install the CMTS” on page 93 prior to performing the procedures presented in this chapter.
Power On the G10 CMTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Table 40: Power Supply LEDs 124 JUNOSg 3.0 G10 CMTS Hardware Guide POWER FAULT Potential Meaning Action Green Not illuminated Normal operation None Green Red Over-temperature ! Check that fan trays are operational (see step 5 on page 124). ! Ensure all empty module slots and power supply bays contain air management modules, panels, and filler panels.
Power On the G10 CMTS 6. Immediately after the G10 CMTS is powered on, check that the Test LED on every DOCSIS Module faceplate is green and blinking (see Figure 12 on page 30). This indicates that the module’s self-test is running. Continue to monitor each module’s Test LED until it stops blinking. If the Test LED is illuminated green, this indicates the successful completion of that module’s self-test.
Power On the G10 CMTS • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 126 Table 42: Chassis Control Module LED Status LED Status Meaning Minor Off No event of priority Warning, Notice, Information, or Critical has occurred. Major Off No event of priority Error has occurred. Critical Off No event of priority Emergency, Alert, or Critical has occurred. Run Green Module is active. ACO ∆1 ∆2 Off Alarm Cutoff not activated.
Power On and Configure the PC described in step 8 (see Figure 17 on page 49). Table 44 indicates the expected status of all the LEDs on the NIC Access Module’s rear panel following power-on. If the OPERATION LED is not illuminated green, the NIC Access Module is considered faulty and you might have to replace it (see the “Remove a NIC Access Module” on page 170). Table 44: NIC Access Module LED Status LED Post-initialization Status Meaning POWER Green Power is applied.
Perform Initial Software Configuration • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 128 Perform Initial Software Configuration When you receive the CMTS, the JUNOSg software is preinstalled and is ready to be configured after the CMTS successfully boots. The primary copy of the software is installed on a nonrotating flash disk and a backup copy is included on the CMTS’s rotating hard disk on the Hard Disk Module.
Perform Initial Software Configuration 7. Configure the IP address of a backup router, which is used only while the routing protocol is not running. [edit] root@# set system backup-router address 8. Configure the IP address of a DNS server. [edit] root@# set system name-server address 9. Set the root authentication password by entering either a clear-text password, an encrypted password, or an ssh public key string (DSA or RSA).
Perform Initial Software Configuration • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 130 12. Optionally, configure additional properties by adding the necessary configuration statements. Then, commit the changes to activate them on the CMTS. [edit] root@host-name# commit 13. When you have finished configuring the CMTS, exit configuration mode.
Part 3 Troubleshooting and Maintenance ! RF Measurements on page 133 ! Troubleshooting on page 141 ! Replacement Procedures on page 159 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 131
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 132 JUNOSg 3.
Chapter 7 RF Measurements This chapter provides the procedures for measuring the downstream and upstream RF signals of a DOCSIS Module using a spectrum analyzer. You can follow these procedures immediately after the initial installation and configuration of the G10 CMTS to ensure the system is configured and operating properly.
Downstream RF Measurement in CATV Mode • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 134 Downstream RF Measurement in CATV Mode This section describes the procedure for measuring the downstream signal power from the G10 CMTS using CATV mode on the HP8591C CATV analyzer.
Downstream RF Measurement in Spectrum Analyzer Mode Figure 40: Downstream RF Signal (CATV Mode) Downstream RF Measurement in Spectrum Analyzer Mode To measure the downstream signal power using the spectrum analyzer mode on the HP8591C CATV analyzer, follow this procedure: 1. Connect the spectrum analyzer to a cable within the plant that carries the downstream signal you are measuring. The signal originates from one of the downstream ports of the HFC Connector Module or the SIM (DS0 through DS3). 2.
Downstream RF Measurement in Spectrum Analyzer Mode • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 136 5. Press the SPAN key and enter 6 MHz. 6. Press the BW key and turn video averaging on by selecting VID AVG ON. The default number of averages is 100. You can change the number of averages by using the numeric keypad. 7. Press the MKR FCTN key (marker function) and select MK NOISE ON.
Upstream RF Measurement Upstream RF Measurement To measure an upstream signal to the CMTS using zero span mode on the HP8591C CATV analyzer, follow this procedure: DOCSIS specifies that cable modems use TDMA (time division multiple access) for upstream transmissions, which means that cable modems are not continuously transmitting. In order to facilitate the triggering and capture of upstream signals, the cable modems should be transmitting long packets as often as possible. 1.
Upstream RF Measurement • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 138 11. Press the SGL SWP key (single sweep) repeatedly until the spectrum analyzer display is similar to the display in Figure 42 on page 138. The first three graticule columns represent the upstream burst transmission of a single cable modem, including the preamble. 12.
Upstream RF Measurement Figure 43 represents the spectrum analyzer display of multiple upstream bursts. This display was produced by repeating this procedure with the following modifications: ! The reference level in step 7 was set to 10 dBmV. ! The sweep time in step 10 was set to 20 milliseconds.
Upstream RF Measurement • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 140 JUNOSg 3.
Chapter 8 Troubleshooting This chapter identifies common issues associated with the operation and configuration of the G10 CMTS, the HFC plant, and cable modem provisioning. Recommendations for troubleshooting and resolving these issues using the flap list are also provided. For purposes of discussion, HFC plant refers to all cabling and equipment on the RF side of the network, other than the CMTS, regardless of its physical location.
Features for Troubleshooting • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 142 Flap List The CMTS maintains a database of cable modems, along with various statistics for each cable modem. When a cable modem exhibits behavior that matches pre-defined criteria—referred to as a flap—an entry is added to a table called a flap list.
Features for Troubleshooting Table 45: Flap List Association to Potential Issues Output Field Value IM (initial maintenance retry flaps) High SM (missed station maintenance flaps) High Potential Issues ! DHCP server issues ! TFTP server issues ! Configuration file issues ! Noise ! Ingress ! Impairments such as common path distortion ! Laser clipping distortion ! Attenuation (too large or too small) CER (codeword error rate flaps) High (with low CERavg) ! Impulse noise CERavg (average CER) High
Features for Troubleshooting • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 144 You should consider the following general guidelines when interpreting the flap list statistics: ! If the flap list statistics are the opposite of the values presented in Table 45, the provisioning and the HFC plant conditions are considered satisfactory. Use these values to establish an operational baseline.
Features for Troubleshooting Local Event Log The local event log of the CMTS corresponds to the docsDevEventTable within the DOCS-CABLE-DEVICE-MIB (RFC 2669). This log can assist you with troubleshooting various issues. The OSSI specification defines required events that a CMTS must support. In addition, the G10 CMTS supports vendor-specific events. To view the log, issue the show log cable command.
Features for Troubleshooting • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 146 Operational Commands The following CLI commands can assist you with troubleshooting issues by displaying various types of information, including cable modem operational states, chassis hardware status, error logs, physical layer statistics, and configuration data: ! show cable modem—Display a list of cable modems (registered and unregistered) and associated
Features for Troubleshooting ! show cable modem unregistered—Display a list of unregistered cable modems and associated operational parameters. ! show chassis environment—Display environmental information about the CMTS chassis, including the temperature of each DOCSIS Module, temperature thresholds, and fan and power supply status. See the JUNOSg Software Operational Mode Command Reference for more information about these commands.
CMTS Power and Booting Issues • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 148 CMTS Power and Booting Issues This section lists the following issues associated with powering up and booting the CMTS, along with procedures to resolve them: ! CMTS Is Not Powering Up on page 148 ! CMTS Does Not Boot Successfully on page 148 ! CMTS Powers Down on page 149 CMTS Is Not Powering Up If it appears that power is not being applied to the CMTS—be
CMTS Power and Booting Issues ! The OK LED of a NIC Module does not illuminate. ! The OPERATIONAL LED of a NIC Access Module does not illuminate. A faulty Chassis Control Module will prevent the CMTS from successfully booting up and might give the false appearance that the DOCSIS Modules and the NIC Modules are also faulty (based on their LED status). Determine the operational status of the Chassis Control Module before declaring any DOCSIS Modules or NIC Modules as faulty.
Ideal HFC Plant Configuration Issues • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 150 Ideal HFC Plant Configuration Issues This section provides a list of potential HFC plant issues and the procedures to resolve them. The troubleshooting procedures in this section assume that the HFC plant is ideal and not contributing to issues associated with the cable modems.
Ideal HFC Plant Configuration Issues Cable Modem Cannot Establish IP Connectivity If a cable modem cannot establish IP connectivity, the cause might be one or more of the following : ! The DHCP server could not be accessed because the network is down. ! The DHCP server is down. Ping the DHCP server IP address using the ping command to see if the server is responding. ! The DHCP server parameters are not properly configured within the CMTS.
Ideal HFC Plant Configuration Issues • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 152 ! The cable modem received a configuration file, but the contents of the file are not valid. Ensure the configuration settings are valid and are consistent with the DOCSIS specifications. ! The cable modem timed out waiting for the time of day (TOD) server to respond.
Ideal HFC Plant Configuration Issues ! The cable modem belongs to a downstream or upstream interface on which a traffic scheduling policy is assigned. Packets that exceed the maximum sustained traffic rate (MSTR) are dropped or shaped, depending on the traffic scheduling policy configuration. Issue the show cable policy traffic-scheduling command to display configured traffic scheduling policies.
Ideal HFC Plant Configuration Issues • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 154 8. You can compute the approximate upstream channel utilization by dividing the measured bandwidth calculated in step 5 by the derated maximum bandwidth calculated in step 7: (4,384,549 / 4,710,400)=93 percent. This represents a highly utilized interface.
Ideal HFC Plant Configuration Issues ! Congestion exists in the downstream. You can compute the approximate downstream channel utilization by monitoring the ifOutOctets object in the DOCS-IF-MIB (RFC 2670). The ifOutOctets object contains the total number of octets transmitted on an interface, including data packets as well as MAC layer packets, and includes the length of the MAC header.
HFC Plant Related Issues • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 156 ! If the cable modem is a CCCM (CPE controlled cable modem), the performance of the CPE is affecting the performance of the cable modem. The CPE performance can be affected by one or more of the following: ! A slow microprocessor. ! Not enough RAM. ! Not enough disk space. ! Running too many applications. ! Improper network configuration.
HFC Plant Related Issues Cable Modem Cannot Successfully Range If a cable modem cannot successfully range, the cause might be one or more of the following: ! There is too much attenuation in the return path. If the power level of the cable modem’s signal measured at the CMTS is not within the tolerable limits of the CMTS due to excessive attenuation, the CMTS responds with an abort ranging status in the ranging response (RNG-RSP) message to the cable modem.
HFC Plant Related Issues • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 158 Cable Modem Throughput is Slow If the throughput of a cable modem seems slow, the cause might be one or more of the following: ! HFC plant issues, such as impulse noise or ingress, that corrupt upstream burst transmissions from the cable modem. A high CERavg value or a low MERavg value in the flap list is indicative of this.
Chapter 9 Replacement Procedures This chapter discusses the following topics related to the removal and replacement of CMTS hardware components: ! Power Supplies on page 159 ! Fan Trays on page 162 ! Module Removal on page 166 Before replacing a power supply or any module from the CMTS, attach one end of an ESD ground strap to your wrist and attach the other end to the ESD ground strap jack on the front of the chassis (see Figure 5 on page 12).
Power Supplies • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 160 If the CMTS is not operating in a power-redundant configuration, a fault with a single power-related component might cause the CMTS to shut down. If a fault does occur within a non-redundant configuration, we strongly recommended that you immediately switch off the power to the CMTS for safety purposes.
Power Supplies 6. Replace the power supply faceplate by aligning its four ball studs with the four power supply faceplate clips and pressing the faceplate towards the chassis until it snaps into place. The power supply faceplate and power supply filler panels must be installed before you power on the G10 CMTS to ensure that proper air ventilation occurs throughout the chassis, and to reduce EMI emissions. See “Install Power Supplies” on page 101 for power supply installation instructions.
Fan Trays • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 162 Fan Trays To maintain an internal temperature below the maximum operating temperature of the G10 CMTS, all fan trays must be fully functional. If any of the fan trays fails, you must replace it as soon as possible to ensure the CMTS remains operational. You can detect a fan tray failure by any of following indicators: ! A fan tray LED is illuminated red.
Fan Trays Front Fan Trays To replace a front fan tray, follow this procedure (see Figure 45 on page 164). 1. Remove the air intake faceplate by pulling the flanges on each side of the faceplate away from the chassis until the faceplate ball studs are removed from the air intake faceplate clips. 2. Each fan tray is held into place by a front fan tray retainer that resides on hinges. The retainer contains a spring-loaded plunger that mates with the chassis when the retainer is locked into position.
Fan Trays • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 164 Figure 45: Front Fan Tray Replacement Retainer Plunger Fan Tray Rail Front Fan Tray Retainer Front Fan Tray JUNOSg 3.
Fan Trays Figure 46: Rear Fan Tray Replacement EXT FAULT INT FAULT OPERATIONAL POWER DS 0 US 0 DS 0 US 0 DS 1 DS 1 US 1 US 1 DS 2 DS 2 US 2 US 2 DS 3 DS 3 1 US 3 US 3 Eth Eth0 Eth0 Eth1 C O M Eth1 2 Midplane Power Connector Fan Tray Flange Midplane Power Connector Fan Tray Flange Rear Fan Tray Replacement Procedures • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 165
Module Removal • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 166 Module Removal This section discussions the following procedures for card module removal: ! Remove a DOCSIS Module on page 166 ! Remove an HFC Connector Module or SIM on page 168 ! Remove a Chassis Control Module on page 169 ! Remove a Hard Disk Module on page 170 ! Remove a NIC Module on page 170 ! Remove a NIC Access Module on page 170 Remove a DOCSIS Module The DOCSIS
Module Removal 6. If the module will not be replaced, you must install an air management module in its place. Tighten the two retainer screws on the air management module by applying 3 in-lb of torque to each screw. You must install air management modules and air management panels in all empty slots while operating the G10 CMTS to ensure that proper air ventilation occurs throughout the chassis, and to reduce EMI emissions.
Module Removal • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 168 Remove an HFC Connector Module or SIM The HFC Connector Module and the SIM are hot-swappable, so you can remove them or install them while the CMTS is powered on. 1. Disconnect all cables that are attached to the module ports. If appropriate, tag each cable with its corresponding module port. 2. Loosen the two retainer screws. 3.
Module Removal Figure 48: HFC Connector Module Removal 2 1 3 DS 0 US 0 DS 1 US 1 DS 2 US 2 DS 3 US 3 0 Eth 1 Eth 1 2 Remove a Chassis Control Module The Chassis Control Module is hot-swappable. However, if you hot-swap the Chassis Control Module, all services supported by the CMTS are lost because the CMTS cannot operate without the Chassis Control Module. To remove a Chassis Control Module, follow this procedure: 1.
Module Removal • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 170 Remove a Hard Disk Module To remove a Hard Disk Module, follow this procedure: 1. Stop the CMTS software by issuing the request system halt command: user@host> request system halt 2. Power down the CMTS. 3. Follow the same procedure described in “Remove an HFC Connector Module or SIM” on page 168.
Part 4 Appendixes ! Agency Certifications on page 173 ! Radio Frequency (RF) Specifications on page 175 ! EIA Channel Plans on page 181 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 171
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 172 JUNOSg 3.
Appendix A Agency Certifications This appendix lists agency compliance and certifications for the G10 CMTS. Safety ! UL 60950 (US, Canada) ! This equipment is intended only for installation in a restricted access location within a building. ! This equipment is intended for indoor use only. ! This equipment does not have a direct copper connection to the outside plant. ! Removal of power supplies or cards will result in access to hazardous energy.
Agency Certifications • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 174 EMC ! FCC Part 15, Class A (US) This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
Appendix B Radio Frequency (RF) Specifications For reference purposes, Table 47 through Table 51 are reproduced from the CableLabs DOCSIS Radio Frequency Interface Specification, SP-RFI-I05-991105. For the complete DOCSIS specifications, see the appropriate CableLabs document.
Radio Frequency (RF) Specifications • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 176 Table 47: Downstream RF Channel Transmission Characteristics Parameter Value Frequency range Cable system normal downstream operating range is from 50 MHz to as high as 860 MHz. However, the values in this table apply only at frequencies >= 88 MHz.
Radio Frequency (RF) Specifications Table 48: Upstream RF Channel Transmission Characteristics Parameter Value Frequency range 5 to 42 MHz edge to edge Transit delay from the most distant CM to the nearest <= 0.
Radio Frequency (RF) Specifications • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 178 Table 49: Downstream RF Signal Output Characteristics Parameter Value Center Frequency (fc) 91 to 857 MHz ± 30 kHz1 Level Adjustable over the range 50 to 61 dBmV Symbol Rate (nominal) 64QAM 256QAM 5.056941 Msym/sec 5.
Radio Frequency (RF) Specifications Table 51: DOCSIS Maximum Upstream Channel Rates and Widths Symbol Rate (ksym/sec) Channel Width (kHz)1 Bit-rate/sec (QPSK) Bit-rate/sec (16QAM) 160 200 320,000 640,000 320 400 640,000 1,280,000 640 800 1,280,000 2,560,000 1,280 1,600 2,560,000 5,120,000 3,200 5,120,000 10,240,000 2,560 1. Channel width is the -30 dB bandwidth.
Radio Frequency (RF) Specifications • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 180 JUNOSg 3.
Appendix C EIA Channel Plans Table 52 lists the EIA (Electronic Industries Association) standard, IRC (Incrementally Related Carrier), and HRC (Harmonically Related Carrier) frequency plans. The frequencies in Table 52 represent the video center frequencies. Add 1.75 MHz to calculate the DOCSIS center frequency. Table 52: EIA Channel Plan Channel STD T-7 7.0000 T-8 13.0000 T-9 19.0000 T-10 25.0000 T-11 31.0000 T-12 37.0000 T-13 43.0000 1 / A-8 IRC HRC 73.2625 72.0036 2 55.2500 55.
EIA Channel Plans • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 182 Channel STD IRC HRC 20 / G 157.2500 157.2625 156.0078 21 / H 163.2500 163.2625 162.0081 22 / I 169.2500 169.2625 168.0084 23 / J 217.2500 217.2625 216.0108 24 / K 223.2500 223.2625 222.0111 25 / L 229.2625 229.2625 228.0114 26 / M 235.2625 235.2625 234.0117 27 / N 241.2625 241.2625 240.0120 28 / O 247.2625 247.2625 246.
EIA Channel Plans Channel STD IRC HRC 63 / AAA 457.2500 457.2625 456.0228 64 / BBB 463.2500 463.2625 462.0231 65 / CCC 469.2500 469.2625 468.0234 66 / DDD 475.2500 475.2625 474.0237 67 / EEE 481.2500 481.2625 480.0240 68 / FFF 487.2500 487.2625 486.0243 69 / GGG 493.2500 493.2625 492.0246 70 / HHH 499.2500 499.2625 498.0249 71 / III 505.2500 505.2625 504.0252 72 / JJJ 511.2500 511.2625 510.0255 73 / KKK 517.2500 517.2625 516.0258 74 / LLL 523.2500 523.
EIA Channel Plans • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 184 Channel STD IRC HRC 106 685.2500 685.2625 684.0342 107 691.2500 691.2625 690.0345 108 697.2500 697.2625 696.0348 109 703.2500 703.2625 702.0351 110 709.2500 709.2625 708.0354 111 715.2500 715.2625 714.0357 112 721.2500 721.2625 720.0360 113 727.2500 727.2625 726.0363 114 733.2500 733.2625 732.0366 115 739.2500 739.2625 738.
EIA Channel Plans Channel STD IRC HRC 149 943.2500 943.2625 942.0471 150 949.2500 949.2625 948.0474 151 955.2500 955.2625 954.0477 152 961.2500 961.2625 960.0480 153 967.2500 967.2625 966.0483 154 973.2500 973.2625 972.0486 155 979.2500 979.2625 978.0489 156 985.2500 985.2625 984.0492 157 991.2500 991.2625 990.0495 158 997.2500 997.2625 996.0498 159 1003.250 1003.2625 1002.
EIA Channel Plans • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 186 JUNOSg 3.
Part 5 Index ! Index on page 189 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 187
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 188 JUNOSg 3.
Index Index Numerics 256QAM....................................................................155 64QAM..............................................................155, 158 A accessory kit................................................................89 agency certifications..................................................173 air exhaust ............................................................17, 95 air intake .......................................................16, 95, 124 faceplate ..........
Index • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 190 configuration file ....................................................... 152 invalid ................................................................ 152 issues ......................................................... 143, 152 name ................................................................. 151 receiving ............................................................
Index L laser clipping .....................................................143, 144 LED ACO ...................................................................126 Chassis Control Module ................................41, 126 Critical................................................................126 DOCSIS Module............................................36, 125 EXT FAULT.........................................................127 EXT FLT .............................................................
Index • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 192 redundant .......................................................... 159 source ................................ 119, 123, 124, 148, 159 supply bay ......................................................... 149 supply faceplate ................................................. 149 supply LED......................................................... 159 switch .......................
Index V • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ventilation ...............69, 89, 95, 101, 124, 161, 162, 167 video servers .................................................................7 voltage, power supply..................................................
Index • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 194 JUNOSg 3.