User's Manual
Table Of Contents
- Contents
- Figures
- Tables
- Revision History
- About This Publication
- 1. Product Description
- 2. Programming Models
- 3. Device Handling
- 4. Event Handling
- 5. Error Handling
- 6. Application Development Guidelines
- 7. Call Progress Analysis
- 7.1 Call Progress Analysis Overview
- 7.2 Call Progress and Call Analysis Terminology
- 7.3 Call Progress Analysis Components
- 7.4 Using Call Progress Analysis on DM3 Boards
- 7.5 Call Progress Analysis Tone Detection on DM3 Boards
- 7.6 Media Tone Detection on DM3 Boards
- 7.7 Default Call Progress Analysis Tone Definitions on DM3 Boards
- 7.8 Modifying Default Call Progress Analysis Tone Definitions on DM3 Boards
- 7.9 Call Progress Analysis Errors
- 7.10 Using Call Progress Analysis on Springware Boards
- 7.11 Call Progress Analysis Tone Detection on Springware Boards
- 7.12 Media Tone Detection on Springware Boards
- 7.13 Default Call Progress Analysis Tone Definitions on Springware Boards
- 7.14 Modifying Default Call Progress Analysis Tone Definitions on Springware Boards
- 7.15 SIT Frequency Detection (Springware Only)
- 7.15.1 Tri-Tone SIT Sequences
- 7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters
- 7.15.3 Obtaining Tri-Tone SIT Frequency Information
- 7.15.4 Global Tone Detection Tone Memory Usage
- 7.15.5 Frequency Detection Errors
- 7.15.6 Setting Single Tone Frequency Detection Parameters
- 7.15.7 Obtaining Single Tone Frequency Information
- 7.16 Cadence Detection in Basic Call Progress Analysis (Springware Only)
- 8. Recording and Playback
- 8.1 Overview of Recording and Playback
- 8.2 Digital Recording and Playback
- 8.3 Play and Record Functions
- 8.4 Play and Record Convenience Functions
- 8.5 Voice Encoding Methods
- 8.6 G.726 Voice Coder
- 8.7 Transaction Record
- 8.8 Silence Compressed Record
- 8.9 Recording with the Voice Activity Detector
- 8.10 Streaming to Board
- 8.11 Pause and Resume Play
- 8.12 Echo Cancellation Resource
- 9. Speed and Volume Control
- 10. Send and Receive FSK Data
- 11. Caller ID
- 12. Cached Prompt Management
- 13. Global Tone Detection and Generation, and Cadenced Tone Generation
- 13.1 Global Tone Detection (GTD)
- 13.1.1 Overview of Global Tone Detection
- 13.1.2 Global Tone Detection on DM3 Boards versus Springware Boards
- 13.1.3 Defining Global Tone Detection Tones
- 13.1.4 Building Tone Templates
- 13.1.5 Working with Tone Templates
- 13.1.6 Retrieving Tone Events
- 13.1.7 Setting GTD Tones as Termination Conditions
- 13.1.8 Maximum Amount of Memory for Tone Templates
- 13.1.9 Estimating Memory
- 13.1.10 Guidelines for Creating User-Defined Tones
- 13.1.11 Global Tone Detection Application
- 13.2 Global Tone Generation (GTG)
- 13.3 Cadenced Tone Generation
- 13.3.1 Using Cadenced Tone Generation
- 13.3.2 How To Generate a Custom Cadenced Tone
- 13.3.3 How To Generate a Non-Cadenced Tone
- 13.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation
- 13.3.5 How To Generate a Standard PBX Call Progress Signal
- 13.3.6 Predefined Set of Standard PBX Call Progress Signals
- 13.3.7 Important Considerations for Using Predefined Call Progress Signals
- 13.1 Global Tone Detection (GTD)
- 14. Global Dial Pulse Detection
- 14.1 Key Features
- 14.2 Global DPD Parameters
- 14.3 Enabling Global DPD
- 14.4 Global DPD Programming Considerations
- 14.5 Retrieving Digits from the Digit Buffer
- 14.6 Retrieving Digits as Events
- 14.7 Dial Pulse Detection Digit Type Reporting
- 14.8 Defines for Digit Type Reporting
- 14.9 Global DPD Programming Procedure
- 14.10 Global DPD Example Code
- 15. R2/MF Signaling
- 16. Syntellect License Automated Attendant
- 17. Building Applications
- Glossary
- Index

Voice API Programming Guide — June 2005 77
Call Progress Analysis
7.15.6 Setting Single Tone Frequency Detection Parameters
The information in this section does not apply to DM3 boards, as the DX_CAP fields mentioned in
this section are not supported on DM3 boards.
The following paragraphs describe how to set single tone frequency detection on Springware
boards.
Setting single tone frequency detection parameters allows you to identify that a SIT sequence was
encountered because one of the tri-tones in the SIT sequence was detected. But frequency detection
cannot determine exactly which SIT sequence was encountered, because it is necessary to identify
two tones in the SIT sequence to distinguish among the four possible SIT sequences.
The default frequency detection range is 900-1000 Hz, which is set to detect the first tone in any
SIT sequence. Because the first tone is often truncated, you may want to increase ca_upperfrq to
1800 Hz so that it includes the third tone. If this results in too many false detections, you can set
frequency detection to detect only the third tone by setting ca_lowerfrq to 1750 and ca_upperfrq to
1800.
The following fields in the DX_CAP are used for frequency detection. Frequencies are specified in
Hertz, and time is specified in 10 msec units.
ca_stdely
Start Delay: the delay after dialing has been completed and before starting frequency
detection. This parameter also determines the start of cadence detection. Default: 25 (10 msec
units).
ca_lowerfrq
lower bound for tone in Hz. Default: 900.
ca_upperfrq
upper bound for tone in Hz. Default: 1000.
ca_timefrq
time frequency. Minimum time for 1st tone in an SIT to remain in bounds. The minimum
amount of time required for the audio signal to remain within the frequency detection range
specified by ca_upperfrq and ca_lowerfrq for it to be considered valid. Default: 5 (10 msec
units)
7.15.7 Obtaining Single Tone Frequency Information
The information in this section does not apply to DM3 boards, as the DX_CAP fields mentioned in
this section are not supported on DM3 boards.
Upon detection of a frequency in the specified range, you can use the ATDX_FRQHZ( ) extended
attribute function to return the frequency in Hz of the tone detected in the range specified by the
DX_CAP ca_lowerfrq and ca_upperfrq parameters. The frequency returned is usually the first tone
of an SIT sequence.