User's Manual
Table Of Contents
- Contents
- Figures
- Tables
- Revision History
- About This Publication
- 1. Product Description
- 2. Programming Models
- 3. Device Handling
- 4. Event Handling
- 5. Error Handling
- 6. Application Development Guidelines
- 7. Call Progress Analysis
- 7.1 Call Progress Analysis Overview
- 7.2 Call Progress and Call Analysis Terminology
- 7.3 Call Progress Analysis Components
- 7.4 Using Call Progress Analysis on DM3 Boards
- 7.5 Call Progress Analysis Tone Detection on DM3 Boards
- 7.6 Media Tone Detection on DM3 Boards
- 7.7 Default Call Progress Analysis Tone Definitions on DM3 Boards
- 7.8 Modifying Default Call Progress Analysis Tone Definitions on DM3 Boards
- 7.9 Call Progress Analysis Errors
- 7.10 Using Call Progress Analysis on Springware Boards
- 7.11 Call Progress Analysis Tone Detection on Springware Boards
- 7.12 Media Tone Detection on Springware Boards
- 7.13 Default Call Progress Analysis Tone Definitions on Springware Boards
- 7.14 Modifying Default Call Progress Analysis Tone Definitions on Springware Boards
- 7.15 SIT Frequency Detection (Springware Only)
- 7.15.1 Tri-Tone SIT Sequences
- 7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters
- 7.15.3 Obtaining Tri-Tone SIT Frequency Information
- 7.15.4 Global Tone Detection Tone Memory Usage
- 7.15.5 Frequency Detection Errors
- 7.15.6 Setting Single Tone Frequency Detection Parameters
- 7.15.7 Obtaining Single Tone Frequency Information
- 7.16 Cadence Detection in Basic Call Progress Analysis (Springware Only)
- 8. Recording and Playback
- 8.1 Overview of Recording and Playback
- 8.2 Digital Recording and Playback
- 8.3 Play and Record Functions
- 8.4 Play and Record Convenience Functions
- 8.5 Voice Encoding Methods
- 8.6 G.726 Voice Coder
- 8.7 Transaction Record
- 8.8 Silence Compressed Record
- 8.9 Recording with the Voice Activity Detector
- 8.10 Streaming to Board
- 8.11 Pause and Resume Play
- 8.12 Echo Cancellation Resource
- 9. Speed and Volume Control
- 10. Send and Receive FSK Data
- 11. Caller ID
- 12. Cached Prompt Management
- 13. Global Tone Detection and Generation, and Cadenced Tone Generation
- 13.1 Global Tone Detection (GTD)
- 13.1.1 Overview of Global Tone Detection
- 13.1.2 Global Tone Detection on DM3 Boards versus Springware Boards
- 13.1.3 Defining Global Tone Detection Tones
- 13.1.4 Building Tone Templates
- 13.1.5 Working with Tone Templates
- 13.1.6 Retrieving Tone Events
- 13.1.7 Setting GTD Tones as Termination Conditions
- 13.1.8 Maximum Amount of Memory for Tone Templates
- 13.1.9 Estimating Memory
- 13.1.10 Guidelines for Creating User-Defined Tones
- 13.1.11 Global Tone Detection Application
- 13.2 Global Tone Generation (GTG)
- 13.3 Cadenced Tone Generation
- 13.3.1 Using Cadenced Tone Generation
- 13.3.2 How To Generate a Custom Cadenced Tone
- 13.3.3 How To Generate a Non-Cadenced Tone
- 13.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation
- 13.3.5 How To Generate a Standard PBX Call Progress Signal
- 13.3.6 Predefined Set of Standard PBX Call Progress Signals
- 13.3.7 Important Considerations for Using Predefined Call Progress Signals
- 13.1 Global Tone Detection (GTD)
- 14. Global Dial Pulse Detection
- 14.1 Key Features
- 14.2 Global DPD Parameters
- 14.3 Enabling Global DPD
- 14.4 Global DPD Programming Considerations
- 14.5 Retrieving Digits from the Digit Buffer
- 14.6 Retrieving Digits as Events
- 14.7 Dial Pulse Detection Digit Type Reporting
- 14.8 Defines for Digit Type Reporting
- 14.9 Global DPD Programming Procedure
- 14.10 Global DPD Example Code
- 15. R2/MF Signaling
- 16. Syntellect License Automated Attendant
- 17. Building Applications
- Glossary
- Index

Voice API Programming Guide — June 2005 75
Call Progress Analysis
ca_lower2frq
Lower bound for second tone in Hz. Default: 0.
ca_upper2frq
Upper bound for second tone in Hz. Default: 0.
ca_time2frq
Minimum time for second tone to remain in bounds. Default: 0 (10 msec units).
ca_mxtime2frq
Maximum allowable time for second tone to be present. Default: 0 (10 msec units).
Third Tone
The following fields in the DX_CAP are used for frequency detection for the third tone.
Frequencies are specified in Hertz, and time is specified in 10 msec units. To enable detection of
the second and third tones, you must set the frequency detection range and time for each tone.
Note: This tone is disabled initially and must be activated by the application using these variables.
ca_lower3frq
Lower bound for third tone in Hz. Default: 0.
ca_upper3frq
Upper bound for third tone in Hz. Default: 0.
ca_time3frq
Minimum time for third tone to remain in bounds. Default: 0 (10 msec units).
ca_mxtime3frq
Maximum allowable time for third tone to be present. Default: 0 (10 msec units).
7.15.3 Obtaining Tri-Tone SIT Frequency Information
Upon detection of the specified sequence of frequencies, you can use extended attribute functions
to provide the exact frequency and duration of each tone in the sequence. The frequency and
duration information will allow exact determination of all four SIT sequences.
The following extended attribute functions are used to provide information on the frequencies
detected by call progress analysis.
ATDX_FRQHZ( )
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP
ca_lowerfrq and ca_upperfrq parameters; usually the first tone of an SIT sequence. This
function can be called on non-DSP boards.
ATDX_FRQDUR( )
Duration of the tone detected in the tone detection range specified by the DX_CAP
ca_lowerfrq and ca_upperfrq parameters; usually the first tone of an SIT sequence (10 msec
units).
ATDX_FRQHZ2( )
Frequency in Hz of the tone detected in the tone detection range specified by the DX_CAP
ca_lower2frq and ca_upper2frq parameters; usually the second tone of an SIT sequence.