User's Manual
Table Of Contents
- Contents
- Figures
- Tables
- Revision History
- About This Publication
- 1. Product Description
- 2. Programming Models
- 3. Device Handling
- 4. Event Handling
- 5. Error Handling
- 6. Application Development Guidelines
- 7. Call Progress Analysis
- 7.1 Call Progress Analysis Overview
- 7.2 Call Progress and Call Analysis Terminology
- 7.3 Call Progress Analysis Components
- 7.4 Using Call Progress Analysis on DM3 Boards
- 7.5 Call Progress Analysis Tone Detection on DM3 Boards
- 7.6 Media Tone Detection on DM3 Boards
- 7.7 Default Call Progress Analysis Tone Definitions on DM3 Boards
- 7.8 Modifying Default Call Progress Analysis Tone Definitions on DM3 Boards
- 7.9 Call Progress Analysis Errors
- 7.10 Using Call Progress Analysis on Springware Boards
- 7.11 Call Progress Analysis Tone Detection on Springware Boards
- 7.12 Media Tone Detection on Springware Boards
- 7.13 Default Call Progress Analysis Tone Definitions on Springware Boards
- 7.14 Modifying Default Call Progress Analysis Tone Definitions on Springware Boards
- 7.15 SIT Frequency Detection (Springware Only)
- 7.15.1 Tri-Tone SIT Sequences
- 7.15.2 Setting Tri-Tone SIT Frequency Detection Parameters
- 7.15.3 Obtaining Tri-Tone SIT Frequency Information
- 7.15.4 Global Tone Detection Tone Memory Usage
- 7.15.5 Frequency Detection Errors
- 7.15.6 Setting Single Tone Frequency Detection Parameters
- 7.15.7 Obtaining Single Tone Frequency Information
- 7.16 Cadence Detection in Basic Call Progress Analysis (Springware Only)
- 8. Recording and Playback
- 8.1 Overview of Recording and Playback
- 8.2 Digital Recording and Playback
- 8.3 Play and Record Functions
- 8.4 Play and Record Convenience Functions
- 8.5 Voice Encoding Methods
- 8.6 G.726 Voice Coder
- 8.7 Transaction Record
- 8.8 Silence Compressed Record
- 8.9 Recording with the Voice Activity Detector
- 8.10 Streaming to Board
- 8.11 Pause and Resume Play
- 8.12 Echo Cancellation Resource
- 9. Speed and Volume Control
- 10. Send and Receive FSK Data
- 11. Caller ID
- 12. Cached Prompt Management
- 13. Global Tone Detection and Generation, and Cadenced Tone Generation
- 13.1 Global Tone Detection (GTD)
- 13.1.1 Overview of Global Tone Detection
- 13.1.2 Global Tone Detection on DM3 Boards versus Springware Boards
- 13.1.3 Defining Global Tone Detection Tones
- 13.1.4 Building Tone Templates
- 13.1.5 Working with Tone Templates
- 13.1.6 Retrieving Tone Events
- 13.1.7 Setting GTD Tones as Termination Conditions
- 13.1.8 Maximum Amount of Memory for Tone Templates
- 13.1.9 Estimating Memory
- 13.1.10 Guidelines for Creating User-Defined Tones
- 13.1.11 Global Tone Detection Application
- 13.2 Global Tone Generation (GTG)
- 13.3 Cadenced Tone Generation
- 13.3.1 Using Cadenced Tone Generation
- 13.3.2 How To Generate a Custom Cadenced Tone
- 13.3.3 How To Generate a Non-Cadenced Tone
- 13.3.4 TN_GENCAD Data Structure - Cadenced Tone Generation
- 13.3.5 How To Generate a Standard PBX Call Progress Signal
- 13.3.6 Predefined Set of Standard PBX Call Progress Signals
- 13.3.7 Important Considerations for Using Predefined Call Progress Signals
- 13.1 Global Tone Detection (GTD)
- 14. Global Dial Pulse Detection
- 14.1 Key Features
- 14.2 Global DPD Parameters
- 14.3 Enabling Global DPD
- 14.4 Global DPD Programming Considerations
- 14.5 Retrieving Digits from the Digit Buffer
- 14.6 Retrieving Digits as Events
- 14.7 Dial Pulse Detection Digit Type Reporting
- 14.8 Defines for Digit Type Reporting
- 14.9 Global DPD Programming Procedure
- 14.10 Global DPD Example Code
- 15. R2/MF Signaling
- 16. Syntellect License Automated Attendant
- 17. Building Applications
- Glossary
- Index

38 Voice API Programming Guide — June 2005
Application Development Guidelines
• Device Initialization Hint
• TDM Bus Time Slot Considerations
• Tone Detection Considerations
6.4.1 Call Control Through Global Call API Library
Call state functions such as dx_wink( ) and board-level parameters such as DXBD_R_ON and
DXBD_R_OFF which are used in digital connections do not apply in DM3 applications.
Similarly, hook state functions such as dx_sethook( ) and dx_wtring( ) and settings such as
DM_RINGS which are used in analog connections do not apply in DM3 applications.
Instead, these call control type functions are typically performed by the Global Call API Library.
For more information on setting up call control, see the Global Call API Programming Guide and
the Global Call API Library Reference.
As another example, the DX_LCOFF termination condition is not supported on DM3 boards using
the voice library; however support is available via call control API. For more information, see the
Global Call Analog Technology User’s Guide.
6.4.2 Multithreading and Multiprocessing
The voice API supports multithreading and multiprocessing on the board level but not on the
channel level on DM3 boards.
The following restrictions apply:
• A channel can only be opened in one process at a time; the same channel cannot be used by
more than one process concurrently. However, multiple processes can access different sets of
channels. Ensure that each process is provided with a unique set of devices to manipulate.
• If a channel is opened in process A and then closed, process B is allowed to open the same
channel. However, you should avoid this type of sequence. Since closing a channel is an
asynchronous operation on DM3 boards, there is a small gap between the time when the
xx_close( ) function returns in process A and the time when process B is allowed to open the
same channel. If process B opens the channel too early, unpredictable results may occur.
• Multiple processes that define tones (GTD or GTG) do not share tone definitions in the
firmware. For example, if you define tone A in process 1 for channel dxxxB1C1 on a DM3
board and the same tone A in process 2 for channel dxxxB1C1 on the same DM3 board, two
firmware tones are consumed on the board. In other words, the same tone defined from
different processes is not shared in the firmware; hence this limits the number of tones that can
be created overall. For more information, see Chapter 13, “Global Tone Detection and
Generation, and Cadenced Tone Generation”.
It is recommended that you develop your application using a single thread per span or a single
thread per board rather than a single thread per channel. For more information on programming
models and performance considerations, see the Standard Runtime Library API Programming
Guide.