Technical Product Specification
Table Of Contents
- 1. Introduction
- 2. Product Overview
- 3. Functional Architecture
- 3.1 Processor Support
- 3.1.1 Processor Population Rules
- 3.1.2 Multiple Processor Initialization
- 3.1.3 Enhanced Intel SpeedStep® Technology
- 3.1.4 Intel® Extended Memory 64 Technology (Intel® EM64T)
- 3.1.5 Execute Disable Bit Feature
- 3.1.6 Multi-Core Processor Support
- 3.1.7 Intel® Virtualization Technology
- 3.1.8 Platform Environmental Control Interface (PECI)
- 3.1.9 Common Enabling Kit (CEK) Design Support
- 3.2 Intel® 5400 Memory Controller Hub Chipset (Intel® 5400 MCH Chipset)
- 3.2.1 Processor Front-Side Buses
- 3.2.2 Snoop Filter
- 3.2.3 System Memory Controller and Memory Subsystem
- 3.2.3.1 Supported Memory
- 3.2.3.2 DIMM Population Rules and Supported DIMM Configurations
- 3.2.3.3 Minimum Memory Configuration
- 3.2.3.4 Memory upgrades
- 3.2.3.5 ECC Code Support
- 3.2.3.6 Memory Sparing
- 3.2.3.7 FBD Memory Thermal Management
- 3.2.3.8 BIOS Support of Memory Subsystem
- 3.2.3.9 Memory Error Handing
- 3.2.3.10 Memory Error Reporting
- 3.3 Intel® 6321ESB I/O Controller Hub
- 3.4 PCI Subsystem
- 3.4.1 Intel® 6321ESB I/O Controller Hub PCI32: 32-bit, 33-MHz PCI Bus Segment
- 3.4.2 Intel® 6321ESB I/O Controller Hub Port 1: x4 PCI Express* Bus Segment
- 3.4.3 Intel® 6321ESB I/O Controller Hub Port 2: x4 PCI Express* Bus Segment
- 3.4.4 MCH to Intel® 6321ESB I/O Controller Hub Chip-to-Chip Interface: Two x4 PCI Express* Bus Segments
- 3.4.5 MCH Ports 5-8: x16 Gen 2 PCI Express* Bus Segment
- 3.4.6 Scan Order
- 3.4.7 Resource Assignment
- 3.4.8 Automatic IRQ Assignment
- 3.4.9 Legacy Option ROM Support
- 3.4.10 EFI PCI APIs
- 3.4.11 Legacy PCI APIs
- 3.5 Video Support
- 3.6 Network Interface Controller (NIC)
- 3.7 Super I/O
- 3.1 Processor Support
- 4. Server Management
- 4.1 Intel® 6321ESB I/O Controller Hub Integrated Baseboard Management Controller (Integrated BMC) Feature Set
- 4.2 Advanced Configuration and Power Interface (ACPI)
- 4.3 System Initialization
- 4.4 Integrated Front Panel User Interface
- 4.5 Platform Control
- 4.6 Standard Fan Management
- 4.7 Private Management I2C Buses
- 4.8 Integrated BMC Messaging Interfaces
- 4.9 Event Filtering and Alerting
- 4.10 Watchdog Timer
- 4.11 System Event Log (SEL)
- 4.12 Sensor Data Record (SDR) Repository
- 4.13 Field Replaceable Unit (FRU) Inventory Device
- 4.14 Non-maskable Interrupt (NMI)
- 4.15 General Sensor Behavior
- 4.16 Processor Sensors
- 4.16.1 Processor Status Sensors
- 4.16.2 Processor VRD Over-temperature Sensor
- 4.16.3 ThermalTrip Monitoring
- 4.16.4 Internal Error (IERR) Monitoring
- 4.16.5 Dynamic Processor Voltage Monitoring
- 4.16.6 Processor Temperature Monitoring
- 4.16.7 Processor Thermal Control Monitoring (ProcHot)
- 4.16.8 CPU Population Error Sensor
- 4.17 Intel® Remote Management Module 2 (Intel RMM2) Support
- 5. System BIOS
- 5.1 BIOS Identification String
- 5.2 BIOS User Interface
- 5.2.1 Logo/Diagnostic Screen
- 5.2.2 BIOS Setup Utility
- 5.2.3 Server Platform Setup Utility Screens
- 5.2.3.1 Main Screen
- 5.2.3.2 Advanced Screen
- 5.2.3.3 Security Screen
- 5.2.3.4 Server Management Screen
- 5.2.3.5 Server Management System Information Screen
- 5.2.3.6 Boot Options Screen
- 5.2.3.7 Boot Manager Screen
- 5.2.3.8 Error Manager Screen
- 5.2.3.9 Exit Screen
- 5.3 Loading BIOS Defaults
- 5.4 Rolling BIOS
- 5.5 OEM Binary
- 6. Connector/Header Locations and Pin-outs
- 7. Jumper Block Settings
- 8. Intel® Light-Guided Diagnostics
- 9. Power and Environmental Specifications
- 9.1 Intel® Server Board S5400SF Design Specifications
- 9.2 Server Board Power Requirements
- 9.2.1 Processor Power Support
- 9.2.2 Power Supply DC Output Requirements
- 9.2.3 Power-on Loading
- 9.2.4 Grounding
- 9.2.5 Standby Outputs
- 9.2.6 Remote Sense
- 9.2.7 Voltage Regulation
- 9.2.8 Dynamic Loading
- 9.2.9 Capacitive Loading
- 9.2.10 Closed-Loop Stability
- 9.2.11 Common Mode Noise
- 9.2.12 Ripple/Noise
- 9.2.13 Soft Starting
- 9.2.14 Timing Requirements
- 9.2.15 Residual Voltage Immunity in Standby Mode
- 10. Regulatory and Certification Information
- Appendix A: Integration and Usage Tips
- Appendix B: POST Code Diagnostic LED Decoder
- Appendix C: POST Error Messages and Handling
- Appendix D: EFI Shell Commands
- Appendix E: Supported Intel® Server Chassis
- Appendix F: 1U PCI Express* Gen 2 Riser Card
- Glossary
- Reference Documents

Intel
®
Server Board S5400SF TPS Functional Architecture
Revision 2.02
Intel order number: D92944-007
37
3.3.4.2 Legacy USB Support
The BIOS supports PS/2 emulation of USB keyboards and mice. During POST, the BIOS
initializes and configures the root hub ports and then searches for a keyboard and/or a mouse
on the USB hub and then enables them.
3.3.5 System Management Bus (SMBus 2.0)
The Intel
®
6321ESB I/O Controller Hub contains a SMBus host interface that allows the
processor to communicate with SMBus slaves. This interface is compatible with most I
2
C
devices. Special I
2
C commands are implemented. The SMBus host controller for the I/O
Controller Hub provides a mechanism for the processor to initiate communications with SMBus
peripherals (slaves).
The Intel
®
6321ESB I/O Controller Hub supports slave functionality, including the Host Notify
protocol. The host controller supports eight command protocols of the SMBus interface: Quick
Command, Send Byte, Receive Byte, Write Byte/Word, Read Byte/Word, Process Call, Block
Read/Write, and Host Notify.
See the System Management Bus (SMBus) Specification, Version 2.0 for more information.
3.3.6 Real-time Clock (RTC)
The Intel
®
6321ESB I/O Controller Hub contains a Motorola* MC146818A-compatible real-time
clock with 256 bytes of battery-backed RAM. The real-time clock performs two key functions:
keeping track of the time of day and storing system data even when the system is powered
down. The RTC operates on a 32.768-KHz crystal and a separate on-board 3-V lithium battery
(Panasonic* 3V CR2032 or equivalent).
The RTC supports two lockable memory ranges. By setting bits in the configuration space, two
8-byte ranges can be locked to read and write accesses. This prevents unauthorized reading of
passwords or other system security information.
3.3.7 General-purpose Input/Output (GPIO)
General-purpose inputs and outputs are provided for custom system designs. The number of
inputs and outputs depends on the Intel
®
6321ESB I/O Controller Hub configuration. All unused
GPI pins must be pulled high or low, so they are at a predefined level and do not cause
problems.
3.4 PCI Subsystem
The primary I/O buses for the server board are PCI Express*. An additional PCI bus segment is
also utilized from the Intel
®
6321ESB I/O Controller Hub to support the on-board video controller.
The MCH utilizes general purpose PCI Express* high-speed ports to achieve superior I/O
performance. The MCH PCI Express* ports are compliant with the PCI Express* Base
Specification, Version 0.9 of Revision 2.0. The raw bit-rate per PCI Express* Gen 1 bit lane is
2.5 Gbit/s. This results in a real bandwidth per Gen 1 bit lane pair of 250 MB/s given the 8/10
encoding used to transmit data across this interface. The result is a maximum theoretical
realized bandwidth on a x4 PCI Express* port of 1 GB/s in each direction. The raw bit-rate per