Specification Update
Errata
Intel
®
Xeon
®
Processor E7 v2 Product Family 33
Specification Update January 2015
• SMI is pending while a lower priority event interrupts
•A REP I/O read
• A I/O read that redirects to MWAIT
Implication: SMM handlers may get false IO_SMI indication.
Workaround: The SMM handler has to evaluate the saved context to determine if the SMI was
triggered by an instruction that read from an I/O port. The SMM handler must not
restart an I/O instruction if the platform has not been configured to generate a
synchronous SMI for the recorded I/O port address.
Status: For the affected steppings, see the “Summary Table of Changes”.
CF56 Performance Monitor SSE Retired Instructions May Return Incorrect
Values
Problem: Performance Monitoring counter SIMD_INST_RETIRED (Event: C7H) is used to track
retired SSE instructions. Due to this erratum, the processor may also count other types
of instructions resulting in higher than expected values.
Implication: Performance Monitoring counter SIMD_INST_RETIRED may report count higher than
expected.
Workaround: None identified.
Status: For the affected steppings, see the “Summary Table of Changes”.
CF57 IRET under Certain Conditions May Cause an Unexpected Alignment
Check Exception
Problem: In IA-32e mode, it is possible to get an Alignment Check Exception (#AC) on the IRET
instruction even though alignment checks were disabled at the start of the IRET. This
can only occur if the IRET instruction is returning from CPL3 code to CPL3 code. IRETs
from CPL0/1/2 are not affected. This erratum can occur if the EFLAGS value on the
stack has the AC flag set, and the interrupt handler's stack is misaligned. In IA-32e
mode, RSP is aligned to a 16-byte boundary before pushing the stack frame.
Implication: In IA-32e mode, under the conditions given above, an IRET can get a #AC even if
alignment checks are disabled at the start of the IRET. This erratum can only be
observed with a software generated stack frame.
Workaround: Software should not generate misaligned stack frames for use with IRET.
Status: For the affected steppings, see the “Summary Table of Changes”.
CF58 Performance Monitoring Event FP_MMX_TRANS_TO_MMX May Not
Count Some Transitions
Problem: Performance Monitor Event FP_MMX_TRANS_TO_MMX (Event CCH, Umask 01H) counts
transitions from x87 Floating Point (FP) to MMX™ instructions. Due to this erratum, if
only a small number of MMX instructions (including EMMS) are executed immediately
after the last FP instruction, a FP to MMX transition may not be counted.
Implication: The count value for Performance Monitoring Event FP_MMX_TRANS_TO_MMX may be
lower than expected. The degree of undercounting is dependent on the occurrences of
the erratum condition while the counter is active. Intel has not observed this erratum
with any commercially available software.
Workaround: None Identified.
Status: For the affected steppings, see the “Summary Table of Changes”.
CF59 General Protection Fault (#GP) for Instructions Greater than 15 Bytes
May be Preempted
Problem: When the processor encounters an instruction that is greater than 15 bytes in length, a
#GP is signaled when the instruction is decoded. Under some circumstances, the #GP
fault may be preempted by another lower priority fault (for example, Page Fault (#PF)).