Data Sheet
Thermal Management
88 Datasheet, Volume 1 of 2
• Applications are expected to run closer to TDP more often as the processor will
attempt to maximize performance by taking advantage of estimated available
energy budget in the processor package.
• The processor may exceed the TDP for short durations to utilize any available
thermal capacitance within the thermal solution. The duration and time of such
operation can be limited by platform runtime configurable registers within the
processor.
• Graphics peak frequency operation is based on the assumption of only one of the
graphics domains (GT) being active. This definition is similar to the IA core Turbo
concept, where peak turbo frequency can be achieved when only one IA core is
active. Depending on the workload being applied and the distribution across the
graphics domains the user may not observe peak graphics frequency for a given
workload or benchmark.
• Thermal solutions and platform cooling that are designed to less than thermal
design guidance may experience thermal and performance issues. For more details,
Note: Intel
®
Turbo Boost Technology 2.0 availability may vary between the different SKUs.
5.1.2 Intel
®
Turbo Boost Technology 2.0 Power Monitoring
When operating in turbo mode, the processor monitors its own power and adjusts the
processor and graphics frequencies to maintain the average power within limits over a
thermally significant time period. The processor estimates the package power for all
components on package. In the event that a workload causes the temperature to
exceed program temperature limits, the processor will protect itself using the Adaptive
Thermal Monitor.
5.1.3 Intel
®
Turbo Boost Technology 2.0 Power Control
Illustration of Intel
®
Turbo Boost Technology 2.0 power control is shown in the
following sections and figures. Multiple controls operate simultaneously allowing
customization for multiple system thermal and power limitations. These controls allow
for turbo optimizations within system constraints and are accessible using MSR, MMIO,
or PECI interfaces.
5.1.3.1 Package Power Control
The package power control settings of PL1, PL2, PL3, PL4 and Tau allow the designer to
configure Intel Turbo Boost Technology 2.0 to match the platform power delivery and
package thermal solution limitations.
• Power Limit 1 (PL1): A threshold for average power that will not exceed -
recommend to set to equal TDP power. PL1 should not be set higher than thermal
solution cooling limits.
• Power Limit 2 (PL2): A threshold that if exceeded, the PL2 rapid power limiting
algorithms will attempt to limit the spike above PL2.
• Power Limit 3 (PL3): A threshold that if exceeded, the PL3 rapid power limiting
algorithms will attempt to limit the duty cycle of spikes above PL3 by reactively
limiting frequency. This is an optional setting
• Power Limit 4 (PL4): A limit that will not be exceeded, the PL4 power limiting
algorithms will preemptively limit frequency to prevent spikes above PL4.