Data Sheet

Technologies
60 Datasheet, Volume 1 of 2
For the above features, BIOS should test the associated capability bit before attempting
to access any of the above registers.
For more information, refer to the Intel® Trusted Execution Technology Measured
Launched Environment Programming Guide
Note: Intel TXT Technology may not be available on all SKUs.
3.2.2 Intel
®
Advanced Encryption Standard New Instructions
(Intel
®
AES-NI)
The processor supports Intel Advanced Encryption Standard New Instructions (Intel
AES-NI) that are a set of Single Instruction Multiple Data (SIMD) instructions that
enable fast and secure data encryption and decryption based on the Advanced
Encryption Standard (AES). Intel AES-NI are valuable for a wide range of cryptographic
applications, such as applications that perform bulk encryption/decryption,
authentication, random number generation, and authenticated encryption. AES is
broadly accepted as the standard for both government and industry applications, and is
widely deployed in various protocols.
Intel AES-NI consists of six Intel SSE instructions. Four instructions, AESENC,
AESENCLAST, AESDEC, and AESDELAST facilitate high performance AES encryption and
decryption. The other two, AESIMC and AESKEYGENASSIST, support the AES key
expansion procedure. Together, these instructions provide full hardware for supporting
AES; offering security, high performance, and a great deal of flexibility.
Note: Intel AES-NI Technology may not be available on all SKUs.
3.2.3 PCLMULQDQ (Perform Carry-Less Multiplication Quad
Word) Instruction
The processor supports the carry-less multiplication instruction, PCLMULQDQ.
PCLMULQDQ is a Single Instruction Multiple Data (SIMD) instruction that computes the
128-bit carry-less multiplication of two 64-bit operands without generating and
propagating carries. Carry-less multiplication is an essential processing component of
several cryptographic systems and standards. Hence, accelerating carry-less
multiplication can significantly contribute to achieving high speed secure computing
and communication.
3.2.4 Intel
®
Secure Key
The processor supports Intel Secure Key (formerly known as Digital Random Number
Generator (DRNG)), a software visible random number generation mechanism
supported by a high quality entropy source. This capability is available to programmers
through the RDRAND instruction. The resultant random number generation capability is
designed to comply with existing industry standards in this regard (ANSI X9.82 and
NIST SP 800-90).
Some possible usages of the RDRAND instruction include cryptographic key generation
as used in a variety of applications, including communication, digital signatures, secure
storage, and so on.