User Guide
Datasheet, Volume 1 of 2 89
Thermal Management
5.1.5.7 Low-Power States and PROCHOT# Behavior
Depending on package power levels during package C-states, outbound PROCHOT#
may de-assert while the processor is idle as power is removed from the signal. Upon
wake up, if the processor is still hot, the PROCHOT# will re-assert. Although, typically
package idle state residency should resolve any thermal issues. The PECI interface is
fully operational during all C-states and it is expected that the platform continues to
manage processor IA core and package thermals even during idle states by regularly
polling for thermal data over PECI.
5.1.5.8 THERMTRIP# Signal
Regardless of enabling the automatic or on-demand modes, in the event of a
catastrophic cooling failure, the package will automatically shut down when the silicon
has reached an elevated temperature that risks physical damage to the product. At this
point, the THERMTRIP# signal will go active.
5.1.5.9 Critical Temperature Detection
Critical Temperature detection is performed by monitoring the package temperature.
This feature is intended for graceful shutdown before the THERMTRIP# is activated.
However, the processor execution is not guaranteed between critical temperature and
THERMTRIP#. If the Adaptive Thermal Monitor is triggered and the temperature
remains high, a critical temperature status and sticky bit are latched in the
PACKAGE_THERM_STATUS MSR 1B1h and the condition also generates a thermal
interrupt, if enabled. For more details on the interrupt mechanism, refer to the Intel
®
64 and IA-32 Architectures Software Developer’s Manual (see Related Documents
section).
5.1.5.10 On-Demand Mode
The processor provides an auxiliary mechanism that allows system software to force
the processor to reduce its power consumption using clock modulation. This
mechanism is referred to as “On-Demand” mode and is distinct from Adaptive Thermal
Monitor and bi-directional PROCHOT#. The processor platforms should not rely on
software usage of this mechanism to limit the processor temperature. On-Demand
Mode can be accomplished using processor MSR or chipset I/O emulation. On-Demand
Mode may be used in conjunction with the Adaptive Thermal Monitor. However, if the
system software tries to enable On-Demand mode at the same time the TCC is
engaged, the factory configured duty cycle of the TCC will override the duty cycle
selected by the On-Demand mode. If the I/O based and MSR-based On-Demand modes
are in conflict, the duty cycle selected by the I/O emulation-based On-Demand mode
will take precedence over the MSR-based On-Demand Mode.
5.1.5.11 MSR Based On-Demand Mode
If Bit 4 of the IA32_CLOCK_MODULATION MSR is set to 1, the processor will
immediately reduce its power consumption using modulation of the internal processor
IA core clock, independent of the processor temperature. The duty cycle of the clock
modulation is programmable using bits [3:1] of the same IA32_CLOCK_MODULATION
MSR. In this mode, the duty cycle can be programmed in either 12.5% or 6.25%
increments (discoverable using CPUID). Thermal throttling using this method will
modulate each processor IA core's clock independently.