Datasheet
Intel
®
Celeron
®
M Processor Datasheet 59
HIT#
HITM#
Input/
Output
Input/
Output
HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation
results. Either FSB agent may assert both HIT# and HITM# together to indicate
that it requires a snoop stall, which can be continued by reasserting HIT# and
HITM# together.
IERR# Output
IERR# (Internal Error) is asserted by a processor as the result of an internal
error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction
on the FSB. This transaction may optionally be converted to an external error
signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted
until the assertion of RESET#, BINIT#, or INIT#.
For termination requirements please refer to the platform design guides.
IGNNE# Input
IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a
numeric error and continue to execute noncontrol floating-point instructions. If
IGNNE# is deasserted, the processor generates an exception on a noncontrol
floating-point instruction if a previous floating-point instruction caused an error.
IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
IGNNE# is an asynchronous signal. However, to ensure recognition of this signal
following an Input/Output write instruction, it must be valid along with the TRDY#
assertion of the corresponding Input/Output Write bus transaction.
INIT# Input
INIT# (Initialization), when asserted, resets integer registers inside the processor
without affecting its internal caches or floating-point registers. The processor
then begins execution at the power-on Reset vector configured during power-on
configuration. The processor continues to handle snoop requests during INIT#
assertion. INIT# is an asynchronous signal. However, to ensure recognition of
this signal following an Input/Output Write instruction, it must be valid along with
the TRDY# assertion of the corresponding Input/Output Write bus transaction.
INIT# must connect the appropriate pins of both FSB agents.
If INIT# is sampled active on the active to inactive transition of RESET#, then the
processor executes its Built-in Self-Test (BIST).
For termination requirements please refer to the platform design guides.
ITP_CLK[1:0] Input
ITP_CLK[1:0] are copies of BCLK that are used only in processor systems
where no debug port is implemented on the system board. ITP_CLK[1:0] are
used as BCLK[1:0] references for a debug port implemented on an interposer. If
a debug port is implemented in the system, ITP_CLK[1:0] are no connects.
These are not processor signals.
LINT[1:0] Input
LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins of all APIC
Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a
maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable
interrupt. INTR and NMI are backward compatible with the signals of those
names on the Pentium
®
processor. Both signals are asynchronous.
Both of these signals must be software configured via BIOS programming of the
APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the
APIC is enabled by default after Reset, operation of these pins as LINT[1:0] is
the default configuration.
LOCK#
Input/
Output
LOCK# indicates to the system that a transaction must occur atomically. This
signal must connect the appropriate pins of both FSB agents. For a locked
sequence of transactions, LOCK# is asserted from the beginning of the first
transaction to the end of the last transaction.
When the priority agent asserts BPRI# to arbitrate for ownership of the FSB, it
will wait until it observes LOCK# deasserted. This enables symmetric agents to
retain ownership of the FSB throughout the bus locked operation and ensure the
atomicity of lock.
Table 25. Signal Description (Sheet 4 of 7)
Name Type Description










