Installation guide
INST ALLATION INSTRUCTIONS R- 410A Split System Air Conditioner
4 421 01 1702 05
Specifications subject to change without notice.
Sweat Connection
CAUTION
!
UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment
damage or improper operation.
Service valves must be wrapped in a heat- sinking
material such as a wet cloth.
Service valves are closed from factory and ready for brazing.
After wrapping service valve with a wet cloth, braze sweat
connections using industry accepted methods and materials.
Consult local code requirements. Refrigerant tubing and indoor
coil are now ready for leak testing. This check should include all
field and factory joints.
Evacuate Refrigerant Tubing and Indoor Coil
CAUTION
!
UNIT DAMAGE HAZARD
Failure to follow this caution may result in equipment
damage or improper operation.
Never use the system compressor as a vacuum pump.
Refrigerant tubes and indoor coil should be evacuated using the
recommended deep vacuum method of 500 microns. If deep
vacuum equipment is not available, the alternate triple
evacuation method may be used by following the specified
procedure. If vacuum must be interrupted during the evacuation
procedure, always break vacuum with dry nitrogen.
Deep Vacuum Method
The deep vacuum method requires a vacuum pump capable of
pulling a vacuum of 500 microns and a vacuum gage capable of
accurately measuring this vacuum depth. The deep vacuum
method is the most positive way of assuring a system is free of air
and liquid water. (See Fig. 4)
Figure 4
Deep Vacuum Graph
500
MINUTES
01234567
1000
1500
LEAK IN
SYSTEM
VACUUM TIGHT
TOO WET
TIGHT
DRY SYSTEM
2000
MICRONS
2500
3000
3500
4000
4500
5000
A95424
T riple Evacuation Method
The triple evacuation method should only be used when system
does not contain any water in liquid form and vacuum pump is
only capable of pulling down to 28 inches of mercury (711mm
Hg). Refer to Fig.5 and proceed is as follows:
1. Pull system down to 28 inches of mercury (711mm Hg) and
allow pump to continue operating for an additional 15
minutes.
2. Close manifold valves or valve at vacuum pump and shut
off vacuum pump.
3. Connect a nitrogen cylinder and regulator to system and fill
with nitrogen until system pressure is 2 psig.
4. Close nitrogen valve and allow system to stand for 1 hour.
During this time, dry nitrogen will diffuse throughout the
system absorbing moisture.
5. Repeat this procedure as indicated in Figure 5.
6. After the final evacuate sequence, confirm there are no
leaks in the system. If a leak is found, repeat the entire
process after repair is made.
Figure 5
Triple Evacuation Sequence
EVACUATE
BREAK VACUUM WITH DRY NITROGEN
WAIT
EVACUATE
CHECK FOR TIGHT, DRY SYSTEM
(IF IT HOLDS DEEP VACUUM
CHARGE SYSTEM
BREAK VACUUM WITH DRY NITROGEN
WAIT
EVACUATE
Final Tubing Check
IMPORTANT: Check to be certain factory tubing on both indoor
and outdoor unit has not shifted during shipment. Ensure tubes
are not rubbing against each other or any sheet metal. Pay close
attention to feeder tubes, making sure wire ties on feeder tubes
are secure and tight.
Make Electrical Connections
!
WARNING
ELECTRICAL SHOCK HAZARD
Failure to follow this warning c ould result in personal
injury or death.
Do not supply power to unit with compressor terminal box
cover removed.
Be sure field wiring complies with local and national fire, s afety,
and electrical codes, and voltage to system is within limits shown
on unit rating plate. Contact local power company for c orrection of
improper voltage. See unit rating plate for recommended circuit
protection device.
NOTE: Operation of unit on improper line voltage constitutes
abuse and could affect unit reliability. See unit rating plate. Do not
install unit in system where voltage may fluctuate above or below
permissible limits.
NOTE: Use copper wire only between disconnect s witch and unit.
NOTE: Install branch circuit disconnect of adequate size per NEC
to handle unit starting current. Locate disconnect within sight from
and readily accessible from unit, per Section 440- 14 of NEC.