Computer Drive User Manual
Table Of Contents
- Front cover
- Contents
- Notices
- Preface
- Summary of changes
- Part 1 Overview
- Chapter 1. Introduction
- Chapter 2. Copy Services architecture
- Part 2 Interfaces
- Chapter 3. DS Storage Manager
- Chapter 4. DS Command-Line Interface
- Chapter 5. System z interfaces
- Part 3 FlashCopy
- Chapter 6. FlashCopy overview
- Chapter 7. FlashCopy options
- 7.1 Multiple relationship FlashCopy
- 7.2 Consistency Group FlashCopy
- 7.3 FlashCopy target as a Metro Mirror or Global Copy primary
- 7.4 Incremental FlashCopy - refresh target volume
- 7.5 Remote FlashCopy
- 7.6 Persistent FlashCopy
- 7.7 Data set FlashCopy
- 7.8 Reverse restore
- 7.9 Fast reverse restore
- 7.10 Options and interfaces
- Chapter 8. FlashCopy ordering and activation
- Chapter 9. FlashCopy interfaces
- Chapter 10. FlashCopy performance
- Chapter 11. FlashCopy examples
- Part 4 Metro Mirror
- Chapter 12. Metro Mirror overview
- Chapter 13. Metro Mirror options and configuration
- Chapter 14. Metro Mirror interfaces
- 14.1 Metro Mirror interfaces - overview
- 14.2 TSO commands for Metro Mirror management
- 14.3 ICKDSF
- 14.3.1 Metro Mirror management with ICKDSF
- 14.3.2 Display the Fibre Channel Connection Information Table
- 14.3.3 PPRCOPY DELPAIR
- 14.3.4 PPRCOPY DELPATH
- 14.3.5 PPRCOPY ESTPATH
- 14.3.6 PPRCOPY ESTPAIR
- 14.3.7 PPRCOPY FREEZE
- 14.3.8 PPRCOPY QUERY
- 14.3.9 PPRCOPY RECOVER
- 14.3.10 PPRCOPY SUSPEND
- 14.3.11 PPRCOPY RUN
- 14.3.12 Refreshing the VTOC
- 14.4 DS Command-Line Interface
- 14.5 DS CLI command- examples
- 14.6 DS Storage Manager GUI
- 14.7 ANTRQST API
- Chapter 15. Metro Mirror performance and scalability
- Chapter 16. Metro Mirror examples
- Part 5 Global Copy
- Chapter 17. Global Copy overview
- Chapter 18. Global Copy options and configuration
- Chapter 19. Global Copy performance and scalability
- Chapter 20. Global Copy interfaces
- Chapter 21. Global Copy examples
- Chapter 22. Global Mirror overview
- Part 6 Global Mirror
- Chapter 23. Global Mirror options and configuration
- 23.1 Terminology used in Global Mirror environments
- 23.2 Create a Global Mirror environment
- 23.3 Modify a Global Mirror session
- 23.4 Remove a Global Mirror environment
- 23.5 Global Mirror with multiple storage disk subsystems
- 23.6 Connectivity between local and remote site
- 23.7 Recovery scenario after primary site failure
- 23.7.1 Normal Global Mirror operation
- 23.7.2 Primary site failure
- 23.7.3 Failover B volumes
- 23.7.4 Check for valid Consistency Group state
- 23.7.5 Set consistent data on B volumes
- 23.7.6 Reestablish the FlashCopy relationship between B and C volumes
- 23.7.7 Restart the application at the remote site
- 23.7.8 Prepare to switch back to the local site
- 23.7.9 Return to local site
- 23.7.10 Conclusions
- Chapter 24. Global Mirror interfaces
- 24.1 Global Mirror interfaces - overview
- 24.2 Different interfaces for the same function
- 24.3 Global Mirror management using TSO commands
- 24.3.1 Establish a Global Mirror environment
- 24.3.2 Define paths
- 24.3.3 Establish Global Copy volume pairs
- 24.3.4 Establish FlashCopy relationships for Global Mirror
- 24.3.5 Define a Global Mirror session
- 24.3.6 Populate a Global Mirror session with volumes
- 24.3.7 Start a Global Mirror session
- 24.3.8 Query a Global Mirror session
- 24.4 DS CLI to manage Global Mirror volumes in z/OS
- 24.5 Global Mirror management using ICKDSF
- 24.5.1 Establish a Global Mirror environment
- 24.5.2 Define paths
- 24.5.3 Establish Global Copy pairs
- 24.5.4 Establish FlashCopy relationships
- 24.5.5 Define a Global Mirror session
- 24.5.6 Add volumes to a session
- 24.5.7 Start Global Mirror
- 24.5.8 Query an active Global Mirror session
- 24.5.9 Remove a Global Mirror environment
- 24.5.10 Stop the Global Mirror session
- 24.5.11 Remove volumes from Global Mirror
- 24.5.12 Un-define the Global Mirror session
- 24.5.13 Withdraw FlashCopy relationships
- 24.5.14 Delete Global Copy pairs
- 24.5.15 Remove all paths
- 24.6 ANTRQST macro
- 24.7 DS Storage Manager GUI
- Chapter 25. Global Mirror performance and scalability
- Chapter 26. Global Mirror examples
- 26.1 Global Mirror examples - configuration
- 26.2 Global Mirror query examples with TSO
- 26.3 Set up the Global Mirror environment using TSO
- 26.4 Primary site failure and recovery management with TSO
- 26.4.1 Primary site failure
- 26.4.2 Stop a Global Mirror session
- 26.4.3 Failover from B to A volumes
- 26.4.4 Check Global Mirror FlashCopy status between B and C volumes
- 26.4.5 Create a data consistent set of B volumes
- 26.4.6 Optionally create a data consistent set of D volumes
- 26.4.7 Create a data consistent set of C volumes
- 26.4.8 Prepare to return to the local site
- 26.4.9 Replicate the changes from B to A
- 26.4.10 Return to the local site and resume Global Mirror
- 26.5 Remove Global Mirror environment using TSO
- 26.6 Planned outage management using ICKDSF
- 26.7 Remove a Global Mirror environment using ICKDSF
- 26.8 Query device information with ICKDSF
- 26.9 Set up a Global Mirror environment using DS SM
- 26.10 Set up a Global Mirror environment using the DS CLI
- 26.11 Control and Query Global Mirror with the DS CLI
- 26.12 Site switch basic operations using the DS CLI
- 26.13 Remove the Global Mirror environment with the DS CLI
- Part 7 Interoperability
- Chapter 27. Combining Copy Service functions
- Chapter 28. Interoperability between DS6000 and DS8000
- 28.1 DS6000 and DS8000 Copy Services interoperability
- 28.2 Preparing the environment
- 28.2.1 Minimum microcode levels
- 28.2.2 Hardware and licensing requirements
- 28.2.3 Network connectivity
- 28.2.4 Creating matching user IDs and passwords
- 28.2.5 Updating the DS CLI profile
- 28.2.6 Adding the Storage Complex
- 28.2.7 Volume size considerations for Remote Mirror Copy
- 28.2.8 Determining DS6000 and DS8000 CKD volume size
- 28.3 RMC: Establishing paths between DS6000 and DS8000
- 28.4 Managing Metro Mirror or Global Copy pairs
- 28.5 Managing DS6000 to DS8000 Global Mirror
- 28.6 Managing DS6000 and DS8000 FlashCopy
- 28.7 z/OS Global Mirror
- Part 8 Solutions
- Chapter 29. Interoperability between DS6000 and ESS 800
- 29.1 DS6000 and ESS 800 Copy Services interoperability
- 29.2 Preparing the environment
- 29.2.1 Minimum microcode levels
- 29.2.2 Hardware and licensing requirements
- 29.2.3 Network connectivity
- 29.2.4 Creating matching user IDs and passwords
- 29.2.5 Updating the DS CLI profile
- 29.2.6 Adding the Copy Services domain
- 29.2.7 Volume size considerations for RMC (PPRC)
- 29.2.8 Volume address considerations on the ESS 800
- 29.3 RMC: Establishing paths between DS6000 and ESS 800
- 29.4 Managing Metro Mirror or Global Copy pairs
- 29.5 Managing ESS 800 Global Mirror
- 29.6 Managing ESS 800 FlashCopy
- Chapter 30. IIBM TotalStorage Rapid Data Recovery
- Chapter 31. IBM TotalStorage Productivity Center for Replication
- 31.1 IBM TotalStorage Productivity Center
- 31.2 Where we are coming from
- 31.3 What TPC for Replication provides
- 31.4 Copy Services terminology
- 31.5 TPC for Replication terminology
- 31.6 TPC for Replication session types
- 31.7 TPC for Replication session states
- 31.8 Volumes in a copy set
- 31.9 TPC for Replication and scalability
- 31.10 TPC for Replication system and connectivity overview
- 31.11 TPC for Replication monitoring and freeze capability
- 31.12 TPC for Replication heartbeat
- 31.13 Supported platforms
- 31.14 Hardware requirements for TPC for Replication servers
- 31.15 TPC for Replication GUI
- 31.16 Command Line Interface to TPC for Replication
- Chapter 32. GDPS overview
- Appendix A. Concurrent Copy
- Appendix B. SNMP notifications
- Appendix C. Licensing
- Appendix D. CLI migration
- Related publications
- Index
- Back cover

Chapter 29. Interoperability between DS6000 and ESS 800 435
If he ESS 800 is going to be purely a remote target for PPRC, and you do not plan to use
it as a source server or use DS GUI to manage the pairs and paths, then you do not need
to have network connectivity to the ESS 800 Copy Services servers. This is because all
path and pair establishment is done by connecting to the source server (which would be
the DS6000). This setup is not recommended because it is less flexible.
29.2.4 Creating matching user IDs and passwords
When you want to use the DS CLI or DS GUI to perform Copy Services operations, you need
to authenticate with a valid user ID and password. When you use the DS GUI to perform an
operation requires it to issue a command to an ESS 800, it must authenticate with the ESS
800. To do this, it uses the DS user ID and password that you used to log on to the GUI. This
means that this user ID and password must be defined in the ESS Specialist. This task needs
to be manually performed. If instead of the DS GUI, you only use the DS CLI, then you are
logging on to the ESS 800 Copy Services server directly and the DS user ID and password
for the GUI is not necessary. For simplified management, you can still create a matching user
ID and password.
Creating a user ID on the DS6000
Log on to the DS6000 SMC using the DS GUI and create a user ID that is in either the admin,
op_storage. or op_copy_services groups. Log off and then log on with that user ID and
change the initial password.
Creating a user ID on the ESS 800
Once you have created a DS user ID, you must create a matching user ID using the ESS 800
Web Specialist:
1. Start a Web browser and connect to the IP address of either ESS 800 cluster.
2. Click
ESS Specialist.
3. Log on with a ESS Specialist user ID that has administrator privileges.
4. Click
Users.
5. Click
Modify Users. Type the user ID name and password that you created in the DS CLI
or GUI. It must be given the
Administration access level.
6. Click
Add to move the user ID to the right hand box.
7. Click
Perform Configuration Update and wait for the completion message.
29.2.5 Updating the DS CLI profile
If you plan to use the DS CLI to manage your ESS 800, you can create a profile to simplify:
connection, commands, and scripted operations. Add extra lines as shown in Example 29-1.
Example 29-1 Possible modification to a DS CLI profile
# ESS 800
# SMC1 is the Copy Services server A
SMC1: 10.0.0.100
# devid is the serial number of the ESS 800 - note there are only 5 digits after the 2105
devid: IBM.2105-22399
# remotedevid is the serial number of the DS6000
remotedevid: IBM.1750-1300247
Important: The ESS Web Copy Services user IDs are not used by the DS CLI or DS GUI.
You only need to create a matching ESS Specialist user ID.