Computer Drive User Manual
Table Of Contents
- Front cover
- Contents
- Notices
- Preface
- Summary of changes
- Part 1 Overview
- Chapter 1. Introduction
- Chapter 2. Copy Services architecture
- Part 2 Interfaces
- Chapter 3. DS Storage Manager
- Chapter 4. DS Command-Line Interface
- Chapter 5. System z interfaces
- Part 3 FlashCopy
- Chapter 6. FlashCopy overview
- Chapter 7. FlashCopy options
- 7.1 Multiple relationship FlashCopy
- 7.2 Consistency Group FlashCopy
- 7.3 FlashCopy target as a Metro Mirror or Global Copy primary
- 7.4 Incremental FlashCopy - refresh target volume
- 7.5 Remote FlashCopy
- 7.6 Persistent FlashCopy
- 7.7 Data set FlashCopy
- 7.8 Reverse restore
- 7.9 Fast reverse restore
- 7.10 Options and interfaces
- Chapter 8. FlashCopy ordering and activation
- Chapter 9. FlashCopy interfaces
- Chapter 10. FlashCopy performance
- Chapter 11. FlashCopy examples
- Part 4 Metro Mirror
- Chapter 12. Metro Mirror overview
- Chapter 13. Metro Mirror options and configuration
- Chapter 14. Metro Mirror interfaces
- 14.1 Metro Mirror interfaces - overview
- 14.2 TSO commands for Metro Mirror management
- 14.3 ICKDSF
- 14.3.1 Metro Mirror management with ICKDSF
- 14.3.2 Display the Fibre Channel Connection Information Table
- 14.3.3 PPRCOPY DELPAIR
- 14.3.4 PPRCOPY DELPATH
- 14.3.5 PPRCOPY ESTPATH
- 14.3.6 PPRCOPY ESTPAIR
- 14.3.7 PPRCOPY FREEZE
- 14.3.8 PPRCOPY QUERY
- 14.3.9 PPRCOPY RECOVER
- 14.3.10 PPRCOPY SUSPEND
- 14.3.11 PPRCOPY RUN
- 14.3.12 Refreshing the VTOC
- 14.4 DS Command-Line Interface
- 14.5 DS CLI command- examples
- 14.6 DS Storage Manager GUI
- 14.7 ANTRQST API
- Chapter 15. Metro Mirror performance and scalability
- Chapter 16. Metro Mirror examples
- Part 5 Global Copy
- Chapter 17. Global Copy overview
- Chapter 18. Global Copy options and configuration
- Chapter 19. Global Copy performance and scalability
- Chapter 20. Global Copy interfaces
- Chapter 21. Global Copy examples
- Chapter 22. Global Mirror overview
- Part 6 Global Mirror
- Chapter 23. Global Mirror options and configuration
- 23.1 Terminology used in Global Mirror environments
- 23.2 Create a Global Mirror environment
- 23.3 Modify a Global Mirror session
- 23.4 Remove a Global Mirror environment
- 23.5 Global Mirror with multiple storage disk subsystems
- 23.6 Connectivity between local and remote site
- 23.7 Recovery scenario after primary site failure
- 23.7.1 Normal Global Mirror operation
- 23.7.2 Primary site failure
- 23.7.3 Failover B volumes
- 23.7.4 Check for valid Consistency Group state
- 23.7.5 Set consistent data on B volumes
- 23.7.6 Reestablish the FlashCopy relationship between B and C volumes
- 23.7.7 Restart the application at the remote site
- 23.7.8 Prepare to switch back to the local site
- 23.7.9 Return to local site
- 23.7.10 Conclusions
- Chapter 24. Global Mirror interfaces
- 24.1 Global Mirror interfaces - overview
- 24.2 Different interfaces for the same function
- 24.3 Global Mirror management using TSO commands
- 24.3.1 Establish a Global Mirror environment
- 24.3.2 Define paths
- 24.3.3 Establish Global Copy volume pairs
- 24.3.4 Establish FlashCopy relationships for Global Mirror
- 24.3.5 Define a Global Mirror session
- 24.3.6 Populate a Global Mirror session with volumes
- 24.3.7 Start a Global Mirror session
- 24.3.8 Query a Global Mirror session
- 24.4 DS CLI to manage Global Mirror volumes in z/OS
- 24.5 Global Mirror management using ICKDSF
- 24.5.1 Establish a Global Mirror environment
- 24.5.2 Define paths
- 24.5.3 Establish Global Copy pairs
- 24.5.4 Establish FlashCopy relationships
- 24.5.5 Define a Global Mirror session
- 24.5.6 Add volumes to a session
- 24.5.7 Start Global Mirror
- 24.5.8 Query an active Global Mirror session
- 24.5.9 Remove a Global Mirror environment
- 24.5.10 Stop the Global Mirror session
- 24.5.11 Remove volumes from Global Mirror
- 24.5.12 Un-define the Global Mirror session
- 24.5.13 Withdraw FlashCopy relationships
- 24.5.14 Delete Global Copy pairs
- 24.5.15 Remove all paths
- 24.6 ANTRQST macro
- 24.7 DS Storage Manager GUI
- Chapter 25. Global Mirror performance and scalability
- Chapter 26. Global Mirror examples
- 26.1 Global Mirror examples - configuration
- 26.2 Global Mirror query examples with TSO
- 26.3 Set up the Global Mirror environment using TSO
- 26.4 Primary site failure and recovery management with TSO
- 26.4.1 Primary site failure
- 26.4.2 Stop a Global Mirror session
- 26.4.3 Failover from B to A volumes
- 26.4.4 Check Global Mirror FlashCopy status between B and C volumes
- 26.4.5 Create a data consistent set of B volumes
- 26.4.6 Optionally create a data consistent set of D volumes
- 26.4.7 Create a data consistent set of C volumes
- 26.4.8 Prepare to return to the local site
- 26.4.9 Replicate the changes from B to A
- 26.4.10 Return to the local site and resume Global Mirror
- 26.5 Remove Global Mirror environment using TSO
- 26.6 Planned outage management using ICKDSF
- 26.7 Remove a Global Mirror environment using ICKDSF
- 26.8 Query device information with ICKDSF
- 26.9 Set up a Global Mirror environment using DS SM
- 26.10 Set up a Global Mirror environment using the DS CLI
- 26.11 Control and Query Global Mirror with the DS CLI
- 26.12 Site switch basic operations using the DS CLI
- 26.13 Remove the Global Mirror environment with the DS CLI
- Part 7 Interoperability
- Chapter 27. Combining Copy Service functions
- Chapter 28. Interoperability between DS6000 and DS8000
- 28.1 DS6000 and DS8000 Copy Services interoperability
- 28.2 Preparing the environment
- 28.2.1 Minimum microcode levels
- 28.2.2 Hardware and licensing requirements
- 28.2.3 Network connectivity
- 28.2.4 Creating matching user IDs and passwords
- 28.2.5 Updating the DS CLI profile
- 28.2.6 Adding the Storage Complex
- 28.2.7 Volume size considerations for Remote Mirror Copy
- 28.2.8 Determining DS6000 and DS8000 CKD volume size
- 28.3 RMC: Establishing paths between DS6000 and DS8000
- 28.4 Managing Metro Mirror or Global Copy pairs
- 28.5 Managing DS6000 to DS8000 Global Mirror
- 28.6 Managing DS6000 and DS8000 FlashCopy
- 28.7 z/OS Global Mirror
- Part 8 Solutions
- Chapter 29. Interoperability between DS6000 and ESS 800
- 29.1 DS6000 and ESS 800 Copy Services interoperability
- 29.2 Preparing the environment
- 29.2.1 Minimum microcode levels
- 29.2.2 Hardware and licensing requirements
- 29.2.3 Network connectivity
- 29.2.4 Creating matching user IDs and passwords
- 29.2.5 Updating the DS CLI profile
- 29.2.6 Adding the Copy Services domain
- 29.2.7 Volume size considerations for RMC (PPRC)
- 29.2.8 Volume address considerations on the ESS 800
- 29.3 RMC: Establishing paths between DS6000 and ESS 800
- 29.4 Managing Metro Mirror or Global Copy pairs
- 29.5 Managing ESS 800 Global Mirror
- 29.6 Managing ESS 800 FlashCopy
- Chapter 30. IIBM TotalStorage Rapid Data Recovery
- Chapter 31. IBM TotalStorage Productivity Center for Replication
- 31.1 IBM TotalStorage Productivity Center
- 31.2 Where we are coming from
- 31.3 What TPC for Replication provides
- 31.4 Copy Services terminology
- 31.5 TPC for Replication terminology
- 31.6 TPC for Replication session types
- 31.7 TPC for Replication session states
- 31.8 Volumes in a copy set
- 31.9 TPC for Replication and scalability
- 31.10 TPC for Replication system and connectivity overview
- 31.11 TPC for Replication monitoring and freeze capability
- 31.12 TPC for Replication heartbeat
- 31.13 Supported platforms
- 31.14 Hardware requirements for TPC for Replication servers
- 31.15 TPC for Replication GUI
- 31.16 Command Line Interface to TPC for Replication
- Chapter 32. GDPS overview
- Appendix A. Concurrent Copy
- Appendix B. SNMP notifications
- Appendix C. Licensing
- Appendix D. CLI migration
- Related publications
- Index
- Back cover

6 IBM System Storage DS6000 Series: Copy Services with IBM System z
Global Mirror (Asynchronous PPRC)
Global Mirror provides a long-distance remote copy feature across two sites using
asynchronous technology. This solution is based on the existing Global Copy and FlashCopy.
With Global Mirror, the data that the host writes to the Storage Unit at the local site is
asynchronously shadowed to the Storage Unit at the remote site. A consistent copy of the
data is automatically maintained on the Storage Unit at the remote site.
Global Mirror operations provide the benefit of supporting operations over virtually unlimited
distances between the local and remote sites, restricted only by the capabilities of the
network and the channel extension technology. It can also provide a consistent and
restartable copy of the data at the remote site, created with minimal impact to applications at
the local site.
The ability to maintain an efficient synchronization of the local and remote sites with support
for failover and failback modes helps to reduce the time that is required to switch back to the
local site after a planned or unplanned outage.
1.1.3 Optional Copy Services function for z/OS
The following functions are only available for z/OS environments with restrictions for where
they can be employed.
z/OS Global Mirror RMZ (formerly XRC)
DS6000 storage servers support z/OS Global Mirror only as a secondary storage server. You
cannot use a DS6000 as a primary storage server for z/OS Global Mirror.
The z/OS Global Mirror function mirrors data on the Storage Unit to a remote location for
Disaster Recovery. It protects data consistency across all volumes that you have defined for
mirroring. The volumes can reside on several different Storage Units. The z/OS Global Mirror
function can mirror the volumes over several thousand kilometers from the source site to the
target recovery site. With z/OS Global Mirror, you can suspend or resume service during an
outage. You do not have to terminate your current data-copy session. You can suspend the
session, then restart it. Only data that changed during the outage must be re-synchronized
between the copies.
z/OS Global Mirror and Metro Mirror across 3 sites
This mirroring capability uses z/OS Global Mirror to mirror primary site data to a location that
is a long distance away and also uses Metro Mirror to mirror primary site data to a location
within the metropolitan area. This enables a z/OS 3-site high availability and disaster
recovery solution for even greater protection from unplanned outages. To use it, you must
purchase both of the following functions:
Remote Mirror for z/OS (2244 Model RMZ for DS8000 Series) on primary site
Remote Mirror and Copy function (2244 Model RMC for DS8000 Series or Machine Type
1750 feature code #5300 RMC for the DS6000 Series) for the primary Storage Unit and
secondary Storage Units at the alternate metropolitan site
Restriction: The XRC and 3-site z/OS Global Mirror environments are supported on
DS6000 Series only as secondary servers at remote sites. They only require standard
DS6000 Copy Services licenses for RMC for the appropriate storage level in a CKD
environment.