Datasheet
Table Of Contents
- Description
- Features
- Ordering Information
- Key Parameters
- Speed Grade
- Address Table
- Pin Descriptions
- Input/Output Functional Descriptions
- Pin Assignments
- Registering Clock Driver Specifications
- On DIMM Thermal Sensor
- Functional Block Diagram
- 4GB, 512Mx72 Module(1Rank of x8)
- 8GB, 1Gx72 Module(1Rank of x4) - page1
- 8GB, 1Gx72 Module(1Rank of x4) - page2
- 8GB, 1Gx72 Module(2Rank of x8) - page1
- 8GB, 1Gx72(2Rank of x8) - page2
- 16GB, 2Gx72 Module(2Rank of x4) - page1
- 16GB, 2Gx72 Module(2Rank of x4) - page2
- 16GB, 2Gx72 Module(2Rank of x4) - page3
- 32GB, 4Gx72 Module(4Rank of x4) - page1
- 32GB, 4Gx72 Module(4Rank of x4) - page2
- 32GB, 4Gx72 Module(4Rank of x4) - page3
- 32GB, 4Gx72 Module(4Rank of x4) - page4
- 32GB, 4Gx72 Module(4Rank of x4) - page5
- Absolute Maximum Ratings
- AC & DC Operating Conditions
- AC & DC Input Measurement Levels
- Vref Tolerances
- AC and DC Logic Input Levels for Differential Signals
- Differential signal definition
- Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS)
- note : Rising input differential signal shall become equal to or greater than VIHdiff(ac) level and Falling input differential signal shall become equal to or less than VIL(ac) level.
- Single-ended requirements for differential signals
- Differential Input Cross Point Voltage
- Slew Rate Definitions for Single-Ended Input Signals
- Slew Rate Definitions for Differential Input Signals
- AC & DC Output Measurement Levels
- Overshoot and Undershoot Specifications
- Refresh parameters by device density
- Standard Speed Bins
- Environmental Parameters
- IDD and IDDQ Specification Parameters and Test Conditions
- IDD Specifications (Tcase: 0 to 95oC)
- Module Dimensions

Rev. 1.0 / May. 2014 48
Speed Bin Table Notes
Absolute Specification (T
OPER
; V
DDQ
= V
DD
= 1.5V +/- 0.075 V);
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When mak-
ing a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as require-
ments from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchro-
nized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should
use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculat
-
ing CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) =
3.0 ns should only be used for CL = 5 calculation.
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG)
down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is
tCK(AVG).MAX corresponding to CL SELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a man-
datory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is
supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
9. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the
table which are not subject to Production Tests but verified by Design/Characterization.
10. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must
be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H
devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin
(Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to
DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin
(Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23)
also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125
ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K.
11. DDR3 SDRAM devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin
must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices sup
-
porting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for
tAAmin(byte 16), tRCDmin(byte 18) and tRPmin(byte 20) is programmed to 13.125ns, tRCmin(byte
21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns +
13.125ns)