HP-UX Virtual Partitions Administrator's Guide (includes A.04.06 and A.05.04)
Table Of Contents
- HP-UX Virtual Partitions Administrator’s Guide
- Table of Contents
- About This Document
- 1 Introduction
- 2 How vPars and Its Components Work
- Partitioning Using vPars
- vPars Monitor and Database
- Boot Sequence
- Virtual Consoles
- Security
- EFI and Integrity Notes
- Integrity Differences Relative to PA-RISC
- Comparing vPars on PA-RISC and Integrity
- Comparing vPars Versions
- Resource Migration and Required States
- Transitioning from vPars A.03.xx to vPars A.04.xx/A.05.xx (CPU Syntax and Rules)
- 3 Planning Your System for Virtual Partitions
- Full ioscan Output of Non-Cellular System Named winona
- Full ioscan Output of Cellular (nPartitionable) System Named keira
- Planning, Installing, and Using vPars with an nPartitionable Server
- Planning Your Virtual Partitions
- Mixed HP-UX 11i v1/v2 vPars Environments in vPars A.04.05
- Mixed HP-UX 11i v2/v3 vPars Environments in vPars A.05.xx
- Mixed HP-UX 11i v1/v2/v3 vPars Environments in vPars A.05.03
- 4 Installing, Updating, or Removing vPars and Upgrading Servers with vPars
- Notes, Cautions, and Other Considerations Before You Update or Install vPars
- Bundle Names
- Setting Up the Ignite-UX Server
- Ignite-UX, the LAN, the LAN card, and vparboot -I
- Updating from vPars A.04.xx to A.05.xx
- Updating from vPars A.03.xx to Mixed HP-UX 11i v1/v2 vPars (A.03.05 and A.04.05) Environment
- Migrating from vPars A.03.xx to Mixed HP-UX 11i v1/v2/v3 vPars (A.03.05, A.04.02 or later, A.05.03)
- Updating from vPars A.04.xx to Mixed HP-UX 11i v2/v3 vPars (A.04.xx and A.05.xx) Environment
- Updating from vPars A.03.xx to A.05.xx
- Updating from vPars A.03.xx to A.04.xx
- Updating vPars A.03.xx to vPars A.03.05
- Updating from vPars (A.02.xx or A.03.xx) to A.03.xx
- Applying a vPars Sub-System Patch
- Upgrading Integrity Servers from the sx1000 to sx2000 Chipset
- Upgrading HP 9000 Servers from the sx1000 to sx2000 Chipset
- Upgrading Backplanes from PCI to PCI-X
- Updates Involving VPARSBASE
- Installing vPars with Ignite-UX on PA-RISC
- Installing vPars with Ignite-UX on Integrity
- Installing vPars with Software Distributor
- Removing the vPars Product
- 5 vPars Monitor and Shell Commands
- Notes on Examples in this Chapter
- Modes: Switching between nPars and vPars Modes (Integrity Only)
- EFI Boot Disk Paths, including Disk Mirrors, and vparefiutil (Integrity Only)
- vPars Monitor: Booting the vPars Monitor
- vPars Monitor: Accessing the vPars Monitor Prompt
- vPars Monitor: Using vPars Monitor Commands
- vPars Monitor: Using the vPars Monitor Commands from ISL or EFI
- Commands: vPars Manpages
- Commands: vPars Commands Logging
- Commands: Displaying vPars Monitor and Resource Information (vparstatus)
- Virtual Partition States
- vparstatus Output Examples
- vparstatus: Summary Information
- vparstatus: Verbose Information
- vparstatus: Available Resources
- vparstatus: CPU Information on vPars A.04/A.05
- vparstatus: Dual-Core CPUs
- vparstatus: Pending Migrating CPUs Operations
- vparstatus: Pending Migrating Memory Operations
- vparstatus: Base and Float Memory Amounts
- vparstatus: Pending nPartition Reboot for Reconfiguration
- vparstatus: vPars Monitor and Database Information
- Managing: Creating a Virtual Partition
- Managing: Removing a Virtual Partition
- Managing: Modifying Attributes of a Virtual Partition
- Booting a Virtual Partition
- Shutting Down or Rebooting a Virtual Partition
- Shutting Down or Rebooting the nPartition (Or Rebooting the vPars Monitor)
- Setboot and System-wide Stable Storage
- Using Primary and Alternate Boot Paths
- Autoboot
- Single-User Mode
- Other Boot Modes
- Resetting a Virtual Partition
- Using an Alternate Partition Database File
- Managing Resources With Only One Virtual Partition
- 6 CPU, Memory, and I/O Resources (A.05.xx)
- I/O: Topics
- I/O: Concepts and Functionality
- I/O: Adding or Deleting LBAs
- I/O: Allocation Notes
- Memory: Topics
- Memory: Concepts and Functionality
- Memory: Assigning (Adding) or Deleting by Size (ILM)
- Memory: Assigning (Adding) Or Deleting by Size (CLM)
- Memory: Assigning (Adding) Or Deleting by Address Range
- Memory: Available and Assigned Amounts
- Memory: Converting Base Memory to Float Memory
- Memory: Granularity Concepts
- Memory: Granularity Issues (Integrity and PA-RISC)
- Memory: Setting the Granularity Values (Integrity)
- Memory: Setting the Granularity Values (PA-RISC)
- Memory: Notes on vPars Syntax, Rules, and Output
- CPU: Topics
- CPU: Concepts and Functionality
- CPU: Specifying Min and Max Limits
- CPU: Adding and Deleting by Total
- CPU: Adding or Deleting by CLP (Cell Local Processor)
- CPU: Adding or Deleting by Hardware Path
- CPU: Notes on vPars Syntax, Rules, and Output
- CPU: Dual-Core Processors
- CPU: Hyperthreading ON/OFF (HT ON/OFF)
- CPUs: Managing I/O Interrupts
- CPU: CPU Monitor (Formerly Known As LPMC Monitor)
- Memory, CPU: Canceling Pending Operations
- 7 CPU, Memory, and I/O Resources (A.04.xx)
- I/O: Concepts
- I/O: Adding or Deleting LBAs
- I/O: Allocation Notes
- Memory: Concepts and Functionality
- Memory: Assigning by Size (ILM)
- Memory: Assigning by Size (CLM)
- Memory: Specifying Address Range
- Memory: Granularity Concepts
- Granularity Issues (Integrity and PA-RISC)
- Memory: Choosing a Granularity Value and Boot Time (Integrity)
- Memory: Setting the Granularity Values (Integrity)
- Memory: Setting the Granularity Values (PA-RISC)
- Memory: Allocation Notes
- CPU
- CPU: Boot Processor and Dynamic CPU Definitions
- CPU: Specifying Min and Max Limits
- CPU: Adding and Deleting by Total
- CPU: Adding or Deleting by CLP (Cell Local Processor)
- CPU: Adding or Deleting by Hardware Path
- CPU: Syntax, Rules, and Notes
- Managing I/O Interrupts
- CPU: Using iCAP (Instant Capacity on Demand) with vPars (vPars A.04.xx and iCAP B.07)
- CPU: Dual-Core Processors
- CPU: CPU Monitor (Formerly Known As LPMC Monitor)
- 8 CPU, Memory, and I/O Resources (A.03.xx)
- I/O: Concepts
- I/O: Adding or Deleting LBAs
- I/O: Allocation Notes
- Memory: Concepts and Functionality
- Memory: Assigning by Size (ILM)
- Memory: Specifying Address Range
- Memory: Allocation Concepts and Notes
- CPU
- CPU: Specifying Min and Max Limits
- CPU: Bound and Unbound
- CPU: Determining Whether to Use Bound or Unbound
- CPU: Determining When to Specify a Hardware Path for a Bound CPU
- CPU: Adding and Removing Bound CPUs
- CPU: Adding a CPU as a Bound CPU
- CPU: Removing a Bound CPU
- CPU: Adding, Removing, and Migrating Unbound CPUs
- CPU: Managing I/O Interrupts
- CPU: Dual-Core Processors
- CPU: CPU Monitor (Formerly Known As LPMC Monitor)
- 9 nPartition Operations
- Basic Conceptual Points on using vPars within nPartitions
- nPartition Information
- Setting Hyperthreading (HT ON/OFF) and cpuconfig Primer
- Rebooting and Reconfiguring Conceptual Points
- Reconfiguring the nPartition
- Putting an nPartition into an Inactive State and Other GSP Operations
- Configuring CLM for an nPartition
- 10 Crash Processing and Recovery
- Crash Processing
- Network and Tape Recovery
- Using make_net_recovery within a vPars Environment
- Using make_tape_recovery Outside of a vPars Environment
- Using make_tape_recovery and Dual-media Boot
- Using make_tape_recovery within a vPars Environment
- Expert Recovery
- 11 vPars Flexible Administrative Capability
- Synopsis
- Terms and Definitions
- Flexible Administrative Capability Commands
- monadmin
- vparadmin
- Persistence across vPars Monitor Reboots
- vPars Commands
- Example vPars Monitor Scenario (monadmin)
- Example HP-UX Shell Scenario (vparadmin)
- A Command Successfully Executed
- A Command Not Executed Due to the Flexible Administrative Capability Feature
- Adding a Virtual Partition to the Designated-admin Virtual Partition List
- Deleting a Virtual Partition to the Designated-admin Virtual Partition List
- Listing the Virtual Partitions in the Designated-admin Virtual Partition List
- Changing the Flexible Administrative Capability Password
- Determining whether Flexible Administrative Capability is ON or OFF
- 12 Virtual Partition Manager (A.03.xx)
- A LBA Hardware Path to Physical I/O Slot Correspondence (PA-RISC only)
- B Problem with Adding Unbound CPUs to a Virtual Partition (A.03.xx)
- C Calculating the Size of Kernels in Memory (PA-RISC only)
- D Memory Usage with vPars in nPartitions
- E Moving from a Standalone to vPars
- F Supported Configurations for Memory Migration
- Glossary
- Index

Memory: Specifying Address Range
Within the already allocated memory sizes, you can specify the memory address ranges using
the mem:::base:range syntax. However, this is not recommended unless you are familiar with
using memory addresses. You should also be familiar with the requirement that all HP-UX
kernels fit within 2 GB of memory, as described in “2 GB Restriction” (page 252).
For usage information, see the vparmodify(1M) manpage. You should select your base:range
after consulting vparstatus -A to determine which ranges are available.
NOTE: Specifying an address range does not increase the amount of memory assigned to the
partition. Rather, it only specifies addresses to use for the already allocated memory sizes.
Therefore, all specified ranges cannot exceed the total allocated memory for the virtual partition.
In other words, the sum of the ILM-specified ranges cannot exceed the total amount of ILM
memory reserved for the virtual partition.
2 GB Restriction
When ranges are specified for the entire memory owned by a partition, you should ensure that
at least one of the ranges is below 2 GB and is large enough to accommodate the kernel for that
partition. However, other partitions also require memory below 2 GB for their kernels. Hence,
you also should ensure that the specified range below 2 GB is not so large such as to preclude
memory below 2 GB for the other partitions.
In general terms, the sum of the size of the kernels must be < 2 GB. To calculate the kernel sizes,
see “Calculating the Size of Kernels in Memory (PA-RISC only)” (page 313).
CAUTION: Not allowing enough memory for the other partitions will cause the other partitions
to not boot. You can boot the partition by freeing up enough memory for the partition to boot,
such as by shutting down an active partition.
If no memory ranges are below 2 GBs for a given partition, the partition will not boot.
If you use the defaults of the dynamic tunables, you will not run into the 2 GB limit. However,
if you have adjusted the dynamic tunables, it is possible to run beyond the 2 GB boundary. For
more information on adjusting the kernel size with dynamic tunables, see the white paper
Dynamically Tunable Kernel Parameters at http://docs.hp.com.
252 CPU, Memory, and I/O Resources (A.03.xx)