HP-UX Virtual Partitions Administrator's Guide (includes A.04.06 and A.05.04)
Table Of Contents
- HP-UX Virtual Partitions Administrator’s Guide
- Table of Contents
- About This Document
- 1 Introduction
- 2 How vPars and Its Components Work
- Partitioning Using vPars
- vPars Monitor and Database
- Boot Sequence
- Virtual Consoles
- Security
- EFI and Integrity Notes
- Integrity Differences Relative to PA-RISC
- Comparing vPars on PA-RISC and Integrity
- Comparing vPars Versions
- Resource Migration and Required States
- Transitioning from vPars A.03.xx to vPars A.04.xx/A.05.xx (CPU Syntax and Rules)
- 3 Planning Your System for Virtual Partitions
- Full ioscan Output of Non-Cellular System Named winona
- Full ioscan Output of Cellular (nPartitionable) System Named keira
- Planning, Installing, and Using vPars with an nPartitionable Server
- Planning Your Virtual Partitions
- Mixed HP-UX 11i v1/v2 vPars Environments in vPars A.04.05
- Mixed HP-UX 11i v2/v3 vPars Environments in vPars A.05.xx
- Mixed HP-UX 11i v1/v2/v3 vPars Environments in vPars A.05.03
- 4 Installing, Updating, or Removing vPars and Upgrading Servers with vPars
- Notes, Cautions, and Other Considerations Before You Update or Install vPars
- Bundle Names
- Setting Up the Ignite-UX Server
- Ignite-UX, the LAN, the LAN card, and vparboot -I
- Updating from vPars A.04.xx to A.05.xx
- Updating from vPars A.03.xx to Mixed HP-UX 11i v1/v2 vPars (A.03.05 and A.04.05) Environment
- Migrating from vPars A.03.xx to Mixed HP-UX 11i v1/v2/v3 vPars (A.03.05, A.04.02 or later, A.05.03)
- Updating from vPars A.04.xx to Mixed HP-UX 11i v2/v3 vPars (A.04.xx and A.05.xx) Environment
- Updating from vPars A.03.xx to A.05.xx
- Updating from vPars A.03.xx to A.04.xx
- Updating vPars A.03.xx to vPars A.03.05
- Updating from vPars (A.02.xx or A.03.xx) to A.03.xx
- Applying a vPars Sub-System Patch
- Upgrading Integrity Servers from the sx1000 to sx2000 Chipset
- Upgrading HP 9000 Servers from the sx1000 to sx2000 Chipset
- Upgrading Backplanes from PCI to PCI-X
- Updates Involving VPARSBASE
- Installing vPars with Ignite-UX on PA-RISC
- Installing vPars with Ignite-UX on Integrity
- Installing vPars with Software Distributor
- Removing the vPars Product
- 5 vPars Monitor and Shell Commands
- Notes on Examples in this Chapter
- Modes: Switching between nPars and vPars Modes (Integrity Only)
- EFI Boot Disk Paths, including Disk Mirrors, and vparefiutil (Integrity Only)
- vPars Monitor: Booting the vPars Monitor
- vPars Monitor: Accessing the vPars Monitor Prompt
- vPars Monitor: Using vPars Monitor Commands
- vPars Monitor: Using the vPars Monitor Commands from ISL or EFI
- Commands: vPars Manpages
- Commands: vPars Commands Logging
- Commands: Displaying vPars Monitor and Resource Information (vparstatus)
- Virtual Partition States
- vparstatus Output Examples
- vparstatus: Summary Information
- vparstatus: Verbose Information
- vparstatus: Available Resources
- vparstatus: CPU Information on vPars A.04/A.05
- vparstatus: Dual-Core CPUs
- vparstatus: Pending Migrating CPUs Operations
- vparstatus: Pending Migrating Memory Operations
- vparstatus: Base and Float Memory Amounts
- vparstatus: Pending nPartition Reboot for Reconfiguration
- vparstatus: vPars Monitor and Database Information
- Managing: Creating a Virtual Partition
- Managing: Removing a Virtual Partition
- Managing: Modifying Attributes of a Virtual Partition
- Booting a Virtual Partition
- Shutting Down or Rebooting a Virtual Partition
- Shutting Down or Rebooting the nPartition (Or Rebooting the vPars Monitor)
- Setboot and System-wide Stable Storage
- Using Primary and Alternate Boot Paths
- Autoboot
- Single-User Mode
- Other Boot Modes
- Resetting a Virtual Partition
- Using an Alternate Partition Database File
- Managing Resources With Only One Virtual Partition
- 6 CPU, Memory, and I/O Resources (A.05.xx)
- I/O: Topics
- I/O: Concepts and Functionality
- I/O: Adding or Deleting LBAs
- I/O: Allocation Notes
- Memory: Topics
- Memory: Concepts and Functionality
- Memory: Assigning (Adding) or Deleting by Size (ILM)
- Memory: Assigning (Adding) Or Deleting by Size (CLM)
- Memory: Assigning (Adding) Or Deleting by Address Range
- Memory: Available and Assigned Amounts
- Memory: Converting Base Memory to Float Memory
- Memory: Granularity Concepts
- Memory: Granularity Issues (Integrity and PA-RISC)
- Memory: Setting the Granularity Values (Integrity)
- Memory: Setting the Granularity Values (PA-RISC)
- Memory: Notes on vPars Syntax, Rules, and Output
- CPU: Topics
- CPU: Concepts and Functionality
- CPU: Specifying Min and Max Limits
- CPU: Adding and Deleting by Total
- CPU: Adding or Deleting by CLP (Cell Local Processor)
- CPU: Adding or Deleting by Hardware Path
- CPU: Notes on vPars Syntax, Rules, and Output
- CPU: Dual-Core Processors
- CPU: Hyperthreading ON/OFF (HT ON/OFF)
- CPUs: Managing I/O Interrupts
- CPU: CPU Monitor (Formerly Known As LPMC Monitor)
- Memory, CPU: Canceling Pending Operations
- 7 CPU, Memory, and I/O Resources (A.04.xx)
- I/O: Concepts
- I/O: Adding or Deleting LBAs
- I/O: Allocation Notes
- Memory: Concepts and Functionality
- Memory: Assigning by Size (ILM)
- Memory: Assigning by Size (CLM)
- Memory: Specifying Address Range
- Memory: Granularity Concepts
- Granularity Issues (Integrity and PA-RISC)
- Memory: Choosing a Granularity Value and Boot Time (Integrity)
- Memory: Setting the Granularity Values (Integrity)
- Memory: Setting the Granularity Values (PA-RISC)
- Memory: Allocation Notes
- CPU
- CPU: Boot Processor and Dynamic CPU Definitions
- CPU: Specifying Min and Max Limits
- CPU: Adding and Deleting by Total
- CPU: Adding or Deleting by CLP (Cell Local Processor)
- CPU: Adding or Deleting by Hardware Path
- CPU: Syntax, Rules, and Notes
- Managing I/O Interrupts
- CPU: Using iCAP (Instant Capacity on Demand) with vPars (vPars A.04.xx and iCAP B.07)
- CPU: Dual-Core Processors
- CPU: CPU Monitor (Formerly Known As LPMC Monitor)
- 8 CPU, Memory, and I/O Resources (A.03.xx)
- I/O: Concepts
- I/O: Adding or Deleting LBAs
- I/O: Allocation Notes
- Memory: Concepts and Functionality
- Memory: Assigning by Size (ILM)
- Memory: Specifying Address Range
- Memory: Allocation Concepts and Notes
- CPU
- CPU: Specifying Min and Max Limits
- CPU: Bound and Unbound
- CPU: Determining Whether to Use Bound or Unbound
- CPU: Determining When to Specify a Hardware Path for a Bound CPU
- CPU: Adding and Removing Bound CPUs
- CPU: Adding a CPU as a Bound CPU
- CPU: Removing a Bound CPU
- CPU: Adding, Removing, and Migrating Unbound CPUs
- CPU: Managing I/O Interrupts
- CPU: Dual-Core Processors
- CPU: CPU Monitor (Formerly Known As LPMC Monitor)
- 9 nPartition Operations
- Basic Conceptual Points on using vPars within nPartitions
- nPartition Information
- Setting Hyperthreading (HT ON/OFF) and cpuconfig Primer
- Rebooting and Reconfiguring Conceptual Points
- Reconfiguring the nPartition
- Putting an nPartition into an Inactive State and Other GSP Operations
- Configuring CLM for an nPartition
- 10 Crash Processing and Recovery
- Crash Processing
- Network and Tape Recovery
- Using make_net_recovery within a vPars Environment
- Using make_tape_recovery Outside of a vPars Environment
- Using make_tape_recovery and Dual-media Boot
- Using make_tape_recovery within a vPars Environment
- Expert Recovery
- 11 vPars Flexible Administrative Capability
- Synopsis
- Terms and Definitions
- Flexible Administrative Capability Commands
- monadmin
- vparadmin
- Persistence across vPars Monitor Reboots
- vPars Commands
- Example vPars Monitor Scenario (monadmin)
- Example HP-UX Shell Scenario (vparadmin)
- A Command Successfully Executed
- A Command Not Executed Due to the Flexible Administrative Capability Feature
- Adding a Virtual Partition to the Designated-admin Virtual Partition List
- Deleting a Virtual Partition to the Designated-admin Virtual Partition List
- Listing the Virtual Partitions in the Designated-admin Virtual Partition List
- Changing the Flexible Administrative Capability Password
- Determining whether Flexible Administrative Capability is ON or OFF
- 12 Virtual Partition Manager (A.03.xx)
- A LBA Hardware Path to Physical I/O Slot Correspondence (PA-RISC only)
- B Problem with Adding Unbound CPUs to a Virtual Partition (A.03.xx)
- C Calculating the Size of Kernels in Memory (PA-RISC only)
- D Memory Usage with vPars in nPartitions
- E Moving from a Standalone to vPars
- F Supported Configurations for Memory Migration
- Glossary
- Index
Granularity
Memory is normally assigned to vPars in units called granules.
Exceptions are described below. The granule values for CLM and ILM
can be different. However, both are subject to the following rules:
+ MOST IMPORTANT, READ CAREFULLY. Granularity, the value of a
granule specification, is not a resource. Resource assignments can
be modified, even if some resource modifications require that a
vPar be Down. Granularity can only be specified when creating a
new database. It cannot be changed thereafter.
+ The minimum values (ILM and CLM) are 64 MB.
+ The default values are 128 MB.
+ The recommended specifications are described below.
+ Any chosen granularity must be an integral power of 2, not just a
multiple of 64. For example, 256 is a legal value, but 192 is not.
+ Although a granularity must be an integral power of 2, memory can
be assigned in any multiple of that value. For example, if the CLM
granularity is 128 MB, it is legal to assign 384 MB of CLM to a
vPar.
+ Integrity systems have a platform-dependent limit to the
number of CLM granules per cell or ILM granules that may be
configured. You can determine specific limits for your
installation by using the vparenv command and examining the "The
maximum possible xLM granules..." messages. Note: When in nPar
mode, the vparenv command does not display the "The maximum
possible xLM granules..." messages if the next boot mode setting is
nPars. So in order to get these values, you have to first change
the next boot mode setting to vPars (reboot not required) and then
invoke the vparenv command. These values, combined with your total
memory of each type, determine the minimum granularities you should
specify in order to allow your vPars to boot. For example, if you
are allowed 1024 ILM granules and your total memory is <= 128 GB,
you can use the default ILM granularity of 128 MB. Or if you are
allowed 16 CLM granules per cell, and your nPar configuration
includes two cells each configured with 8 GB of CLM, your CLM
granularity must be >= 512 MB.
If the total ILM memory or CLM memory per cell exceeds that which
can be configured in the maximum number of granules using your
specified granularity, the vPar Monitor will not boot any vPar. In
this case, you must increase one or both granularities
appropriately so that all available memory can be accommodated.
This will require a complete reconfiguration of your database.
Careful configuration planning will avoid this situation.
Granularity limitations do not apply to PA-RISC platforms.
However, there are guidelines that do apply to both PA-RISC and
Integrity systems. These are described next.
+ Recommendations for ILM and CLM granularity specifications:
On PA-RISC platforms, each vPar needs ILM below 2 GB to load and
launch its kernel. However, portions of the first granule
(starting at address 0) are used for the Monitor's code and data,
therefore will not be used for the kernel. Hence, excluding the
first granule, there should be at least one granule below 2 GB for
each partition. So if ILM granularity is 128 MB, the first 2 GB
will consist of 16 granules. Therefore, it will be possible
224 CPU, Memory, and I/O Resources (A.04.xx)