HP-UX Floating-Point Guide

10
Figures
Figure 1-1. Math Library Directory Hierarchy at Release 11.0 . . . . . . 31
Figure 2-1. IEEE Single-Precision Format. . . . . . . . . . . . . . . . . . . . . . . 37
Figure 2-2. IEEE Double-Precision Format . . . . . . . . . . . . . . . . . . . . . . 37
Figure 2-3. IEEE Quad-Precision Format. . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2-4. IEEE Single-Precision Format: Example . . . . . . . . . . . . . . 39
Figure 3-1. Taking the Difference of Similar Values . . . . . . . . . . . . . . . 88
Figure 3-2. Adding Values with Very Different Magnitudes . . . . . . . . . 89
Figure 3-3. Unintentional Underflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 4-1. Anatomy of a Math Library Call . . . . . . . . . . . . . . . . . . . . 102
Figure 4-2. C Math Library Error Handling for the acos Function. . . 105
Figure 4-3. Fortran 90 Math Library Error Handling . . . . . . . . . . . . . 107
Figure 4-4. Fortran 77 Math Library Error Handling . . . . . . . . . . . . . 108
Figure 5-1. PA-RISC Floating-Point Status Register (fr0L) . . . . . . . . 128