HP MLIB User's Guide Vol. 2 7th Ed.

670 HP MLIB LAPACK User’s Guide
SLANSB/DLANSB/CLANHB/CLANSB/ZLANHB/ZLANSB Compute norm of symmetric or Hermitian band matrix
ab The upper or lower triangle of the symmetric or
Hermitian band matrix A, stored in the first kd+1 rows
of the array. The j-th column of A is stored in the j-th
column of array ab as follows:
If uplo = ’U’ or ’u’, ab(kd+1+ij,j) = A(i,j) for
max(1,jkd) i j;
If uplo = ’L’ or ’l’, ab(1+ij,j) = A(i,j)
for j i min(n,j+kd).
ldab The leading dimension of array ab in the calling
program unit. ldab kd+1.
Working
Storage
work,
rwork
Arrays used for work space. Not referenced unless
norm = ’1’ or ’I’ or ’i’ or ’O’ or ’o’.
Output anorm The function value is the value of the requested norm
of A.
Notes Actual character arguments in a subroutine call may be longer than the
corresponding dummy arguments. Therefore, readability of the CALL
statement may be improved by coding the norm argument as ’Frobenius’ for ’F’,
’Infinity-Norm’ for ’I’, ’One-norm’ or ’1-norm’ for ’O’, or ’Max-Element’ for ’M’.