HP MLIB User's Guide Vol. 1 7th Ed.

Chapter 4 Sparse BLAS Operations 501
Diagonal format triangular solve SDIASM/DDIASM/CDIASM/ZDIASM
Name SDIASM/DDIASM/CDIASM/ZDIASM
Diagonal format triangular solve
Purpose Diagonal format triangular solve. Given a scalar α, an upper- or
lower-triangular sparse matrix A, and a m-by-n matrix B, these subprograms
compute either of the matrix solutions αA
–1
B, or αDA
–1
B, or αA
–1
DB, where D
is a diagonal matrix. The size of A is m-by-m. Optionally, A
–1
may be replaced
by A
–T
, or by A
*. Here, A
–T
is the transpose-inverse and A
* is the
conjugate-transpose-inverse of A. The solution matrix may be stored in the
result matrix C or optionally may be added to or subtracted from it. This is
handled in a convenient, but general way by two scalar arguments, α and β,
which are used as multipliers of the solution matrix and the result matrix.
Specifically, these subprograms compute matrix solutions of the form
Usage VECLIB:
SUBROUTINE SDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
REAL*4 alpha, beta
REAL*4 val(*), b(ldb,*), c(ldc,*), work(*)
CALL SDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE DDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
REAL*8 alpha, beta
REAL*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL DDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)
SUBROUTINE CDIASM
INTEGER*4 transa, m, n, unitd, lda, ndiag, ldb, ldc, lwork
INTEGER*4 descra(*), idiag(*)
COMPLEX*8 alpha, beta
COMPLEX*8 val(*), b(ldb,*), c(ldc,*), work(*)
CALL CDIASM (transa, m, n, unitd, dv, alpha, descra, val, lda, idiag,
ndiag, b, ldb, beta, c, ldc, work, lwork)
C ←αA
–1
B C
C ←αA
–T
B CC←αA
*B C
C ←αDA
–1
B C
C ←αDA
–T
B CC←αDA
*B C
C ←αA
–1
DB C
C ←αA
T
DB CC←αA
*DB C