ctan.3m (2010 09)

c
ctan(3M) ctan(3M)
(HP Integrity Server Only)
NAME
ctan( ), ctanf( ), ctanl( ), ctanw( ), ctanq( ) - complex tangent functions
SYNOPSIS
#include <complex.h>
double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);
extended complex ctanw(extended complex z);
quad complex ctanq(quad complex z);
DESCRIPTION
These functions are available only for Integrity servers.
ctan() returns the complex tangent of z .
ctanf() is a float complex version of
ctan(); it takes a float complex argument and returns a
float complex result.
ctanl() is a long double complex version of ctan(); it takes a long double complex
argu-
ment and returns a
long double complex result.
ctanw() is an extended complex version of ctan(); it takes an extended complex argument
and returns an extended complex result.
ctanq() is equivalent to ctanl() on HP-UX systems.
USAGE
To use these functions, compile with the default
-Ae option. To use ctanw() or
ctanq(), compile with
the
-fpwidetypes option. Make sure your program includes <complex.h>. Link in the math
library by specifying -lm on the compiler or linker command line.
RETURN VALUE
ctan(conj(z)) = conj(ctan(z)) and ctan is odd.
ctan(+0+i0) returns +0+i0.
ctan(Inf+iy) returns NaN+iNaN and raises the invalid floating-point exception, for finite y.
ctan(NaN+iy) returns NaN+iNaN and optionally raises the invalid floating-point exception, for finite y .
ctan(+x+iInf) returns 0sin(2x)+i1, for positive-signed finite x .
ctan(+Inf+iInf) returns ±0+i1 (where the sign of the real part of the result is unspecified).
ctan(+NaN+iInf) returns ±01+i1 (where the sign of the real part of the result is unspecified).
ctan(0+iNaN) returns 0+iNaN.
ctan(x+iNaN) returns NaN+iNaN and optionally raises the invalid floating-point exception, for all
nonzero numbers x .
ctan(NaN+iNaN) returns NaN+iNaN.
ERRORS
No errors are defined.
SEE ALSO
tan(3M), catan(3M), complex(5).
STANDARDS CONFORMANCE
ctan(), ctanf(), ctanl() : ISO/IEC C99 (including Annex G, ‘‘IEC 60559-compatible complex arith-
metic’’)
HP-UX 11i Version 3: September 2010 1 Hewlett-Packard Company 1

Summary of content (2 pages)