hp 9g Graphing Calculator Contents Chapter 1 : General Operations ................................... 4 Power Supply .................................................................... 4 Turning on or off ........................................................................... 4 Battery replacement ...................................................................... 4 Auto power-off function ................................................................ 4 Reset operation ............................
Arithmetic Calculation...................................................... 13 Display Format ................................................................ 13 Parentheses Calculations .................................................. 14 Percentage Calculations ................................................... 14 Repeat Calculations ......................................................... 14 Answer Function..............................................................
Correcting Statistical Data ................................................ 23 Probability Distribution (1-Var Data) ................................. 23 Regression Calculation ..................................................... 24 Chapter 7 : BaseN Calculations .................................. 24 Negative Expressions....................................................... 25 Basic Arithmetic Operations for Bases............................... 25 Logical Operation ......................................
Chapter 1 : General Operations Power Supply Turning on or off To turn the calculator on, press [ ON ]. To turn the calculator off, press [ 2nd ] [ OFF ]. Battery replacement The calculator is powered by two alkaline button batteries (GP76A or LR44). When battery power becomes low, LOW BATTERY appears on the display. Replace the batteries as soon as possible. To replace the batteries: 1. 2. 3. 4. 5. Remove the battery compartment cover by sliding it in the direction of the arrow. Remove the old batteries.
darker. Display Features Graph display Calculation display Entry line Displays an entry of up to 76 digits. Entries with more than 11 digits will scroll to the left. When you input the 69th digit of a single entry, the cursor changes from to to let you know that you are approaching the entry limit. If you need to input more than 76 digits, you should divide your calculation into two or more parts. Result line Displays the result of a calculation.
SCIENG SCIentific or ENGineering display format FIX Number of decimal places displayed is fixed HYP Hyperbolic trig function will be calculated The displayed value is an intermediate result There are digits to the left or right of the display There are earlier or later results that can be displayed. These indicators blink while an operation or program is executing. Chapter 2 : Before Starting a Calculation Changing Modes Press [ MODE ] to display the modes menu.
Label color Meaning White Just press the key Yellow Press [ 2nd ] and then the key Green In Base-N mode, just press the key Blue Press [ ALPHA ] and then the key Using the 2nd and ALPHA keys To execute a function with a yellow label, press [ 2nd ] and then the corresponding key. When you press [ 2nd ], the 2nd indicator appears to indicate that you will be selecting the second function of the next key you press.
] or [ ] to move the cursor to that To delete a character, press [ character and then press [ DEL ]. (When the cursor is on a character, the character is underlined.) To undo the deletion, immediately press [ 2nd ] [ ]. To clear all characters, press [ CL/ESC ]. See Example 1. Recalling Previous Inputs and Results Press [ ] or [ ] to display up to 252 characters of previous input, values and commands, which can be modified and re-executed. See Example 2.
memories can be added in this way, giving you a maximum of 59 memories (26 + 33). Note: To restore the default memory configuration—26 memories—specify Defm 0. Expanded memories are named A [ 1 ] , A [ 2 ] etc and can be used in the same way as standard memory variables. See Example 7. Note: When using array variables, be careful to avoid overlap of memories. The relation between memories is as follows: Order of Operations Each calculation is performed in the following order of precedence: 1.
5. Abbreviated multiplication format involving variables, π, RAND, RANDI. 6. ( – ) 7. Abbreviated multiplication format in front of Type B functions, , Alog2, etc. 8. nPr, nCr 9. × , 10. +, – 11. Relational operators: = =, < , >, ≠, ≤ , ≥ 12. AND, NAND (BaseN calculations only) 13. OR, XOR, XNOR (BaseN calculations only) d/e, F D, DMS) 14. Conversion (A b/c When functions with the same priority are used in series, execution is performed from right to left.
tan –1 x x < 1 × 10 sinh x, cosh x x ≦ 230.2585092 tanh x x < 1 × 10 100 sinh –1 x x < 5 × 10 99 cosh –1 x tanh –1 x 1 ≦ x < 5 × 10 x 1 × 10 10 ex x x 2 x -1 X! P ( x, y ) R (r,θ) 99 < 1 log x, ln x x 100 –99 ≦ x < 1 × 10 100 –1 × 10 100 < x < 100 –1 × 10 100 < x ≦ 230.2585092 0 ≦ x < 1 × 10 x < 1 × 10 x < 1 × 10 100 50 100 , x≠0 0 ≦ x ≦ 69, x is an integer. x 2 + y 2 <1 × 10 100 0 ≦ r< 1 × 10 100 Deg:│θ│<4.5 × 10 10 deg Rad:│θ│<2.
nPr, nCr 0 ≦ r ≦ n, n < 10 STAT | x | < 1×10 100,| y | < 1×10 100 1 -VAR : n ≦ 30, 2 -VAR : n ≦ 30 FREQ.
2. An improper argument was used in a command or function. 3. An END statement is missing from a program. LENGTH Er An entry exceeds 84 digits after implied multiplication with auto-correction. OUT OF SPEC You input a negative CPU or CPL value, where C = PU USL – x 3σ and C = PL x – LSL 3σ NEST Er Subroutine nesting exceeds 3 levels. GOTO Er There is no corresponding Lbl n for a GOTO n. GOSUB Er 1. There is no corresponding PROG n for a GOSUB PROG n. 2.
• A decimal format is selected by pressing [ 2nd ] [ FIX ] and selecting a value from the menu (F0123456789). To set the displayed decimal places to n, enter a value for n directly, or press the cursor keys until the value is underlined and then press [ ]. (The default setting is floating point notation (F) and its n value is •). See Example 11. • Number display formats are selected by pressing [ 2nd ] [ SCI/ENG ] and choosing a format from the menu.
When you enter a numeric value or numeric expression and press [ ], the result is stored in the Answer function, which you can then quickly recall. See Example 19. Note: The result is retained even if the power is turned off. It is also retained if a subsequent calculation results in an error. Chapter 4 : Common Math Calculations Logarithm and Antilogarithm You can calculate common and natural logarithms and antilogarithms using [ log ], [ ln ], [ 2nd ] [ 10 x ], and [ 2nd ] [ e x ]. See Example 20.
To change the angular unit setting to another setting, press [ DRG ] repeatedly until the angular unit you want is indicated on the display. The 1. 2. 3. conversion procedure follows (also see Example 25): Change the angle units to the units you want to convert to. Enter the value of the unit to convert. Press [ 2nd ] [ DMS ] to display the menu. The units you can select are °(degrees), ’ (minutes), ” (seconds), r (radians), g (gradians) or DMS (Degrees-Minutes-Seconds). 4.
Press [ MATH ] repeatedly to is display a list of mathematical functions and their associated arguments. See Example 31. The functions available are: ! Calculate the factorial of a specified positive integer n , where n≦69. RAND Generate a random number between 0 and 1. RANDI Generate a random integer between two specified integers, A and B, where A ≦ random value≦ B. RND Round off the result. MAX Determine the maximum of given numbers. (Up to 10 numbers can be specified.
1. 2. Enter the number you want to convert. Press [ 2nd ] [ CONV ] to display the units menu. There are 7 menus, covering distance, area, temperature, capacity, weight, energy, and pressure. ] or [ 3. Press [ ] to scroll through the list of units until the appropriate units menu is shown, then press [ ]. 4. Press [ ] to convert the number to the highlighted unit.
1. 2. 3. 4. Position your cursor where you want the constant inserted. Press [ 2nd ] [ CONST ] to display the physics constants menu. Scroll through the menu until the constant you want is underlined. Press [ ]. (See Example 34.) Multi-statement functions Multi-statement functions are formed by connecting a number of individual statements for sequential execution. You can use multi-statements in manual calculations and in the program calculations.
After setting the range, press [ Graph ] and enter the expression to be graphed. See Example 37. Graph ↔ Text Display and Clearing a Graph Press [ G versa. T ] to switch between graph display and text display and vice To clear the graph, please press [ 2nd ] [ CLS ]. Zoom Function The zoom function lets you enlarge or reduce the graph. Press [ 2nd ] [ Zoom x f ] to specify the factor for enlarging the graph, or press [ 2nd ] [ Zoom x 1/f ] to specify the factor for reducing the graph.
] and This function lets you move a pointer around a graph by pressing [ ]. The x- and y-coordinates of the current pointer location are displayed [ on the screen. This function is useful for determining the intersection of superimposed graphs (by pressing [ 2nd ] [ X Y ]). See Example 40. Note: Due to the limited resolution of the display, the position of the pointer may be an approximation. Scrolling Graphs After generating a graph, you can scroll it on the display.
7. ][ ] to scroll through the statistical Press [ ][ ] or [ variables until you reach the variable you are interested in (see table below). Variable Meaning Number of x values or x–y pairs entered. n or Mean of the x values or y values. Xmax or Ymax Maximum of the x values or y values. Xmin or Ymin Minimum of the x values or y values. Sx or Sy Sample standard deviation of the x values or y values. σx orσy Population standard deviation of the x values or y values.
, Cpx or Cpy Potential capability precision of the x values or y values, Cpkx or Cpky Minimum (CPU, CPL) of the x values or y values, where CPU is the upper spec. limit of capability precision and CPL is lower spec. limit of capability precision. C pkx = Min (CPUX, CPLX) = Cpx(1–Cax) Cpky = Min (CPUY, CPLY) = Cpy(1–Cay) ppm Parts per million, Defection Per Million Opportunities. , Note: When calculating process capability in 2-VAR mode, the x n and y values are independent of each other.
R(t) The cumulative fraction of the standard normal distribution that lies between t and 0. R(t) = 1 – t. Q(t) The cumulative fraction of the standard normal distribution that is greater than t. Q(t) = | 0.5– t |.
You can enter numbers in base 2, base 8, base 10 or base 16. To set the number base, press [ 2nd ] [ dhbo ], select an option from the menu and ]. An indicator shows the base you selected: d, h, b , or o. (The press [ default setting is d: decimal base). See Example 49.
Before Using the Program Area Number of Remaining Steps: The program capacity is 400 steps. The number of steps indicates the amount of storage space available for programs, and it will decrease as programs are input. The number of remaining steps will also decrease when steps are converted to memories. See Array Variables above. Program Type: You must specify in each program the calculation mode that the calculator should enter when executing the program.
INPUT memory variable ⇒ Makes the program pause for data input. memory variable = _ appears on the display. Enter a value and press [ ]. The value is assigned to the specified variable, and the program resumes execution. To input more than one memory variable, separate them with a semicolon (;). PRINT “ text ” , memory variable ⇒ Print the text specified inside the double quotation marks and the value of the specified memory variable.
⇒ Each program needs an END command to mark the end of the program. This is displayed automatically when you create a new program. Increment and decrement Post-fixed: Memory variable + + or Memory variable – – Pre-fixed: + + Memory variable or – – Memory variable ⇒ A memory variable is decreased or increased by one. For standard memory variables, the + + ( Increment ) and – – ( Decrement ) operators can be either post-fixed or pre-fixed. For array variables, the operators must be pre-fixed.
⇒ The SWAP command swaps the contents in two memory variables. Relational Operators The relational operators that can be used in FOR loops and conditional branching are: = = (equal to), < (less than), > (greater than), ≠ (not equal to), ≤ (less than or equal to), ≥ (greater than or equal to). Creating a New Program 1. 2. Select NEW from the program menu and press [ ]. Select the calculation mode you want the program to run in and press ]. [ 3.
Debugging a Program A program might generate an error message or unexpected results when it is executed. This indicates that there is an error in the program that needs to be corrected. • Error messages appear for approximately 5 seconds, and then the cursor blinks at the location of the error. • To correct an error, select EDIT from the program menu. • You also can select TRACE from the program menu. The program is then checked step-by-step and a message alerts you to any errors.
3. 4. To erase all the programs, select ALL. A message appears asking you to confirm that you want to delete the program(s). ] to move the cursor to Y and then press [ Press [ ]. 5. To exit DEL mode, select EXIT from the program menu. Program Examples See Examples 54 to 63.
[ ] [ ] [ ] Example 3 Enter 14 14 [ 0 × 2.3 and then correct it to 14 ] 0 [ × ] 2.3 [ ] (after 5 Seconds ) [ ]1[ ] Example 4 [ ( 3 × 5 ) + ( 56 7 ) – ( 74 – 8 × 7 ) ] = 5 3 [ × ] 5 [ M+ ] E-32 10 × 2.
56 [ ] 7 [ M+ ] [ MRC ] [ ] 74 [ – ] 8 [ × ] 7 [ 2nd ] [ M– ] [ MRC ] [ ] [ MRC ] [ MRC ] [ CL / ESC ] Example 5 (1) Assign 30 into variable A [ 2nd ] [ CL-VAR ] 30 [ SAVE ] [A][ ] 0 (2) Multiply variable A by 5 and assign the result to variable B 5 [ × ] [ 2nd ] [ RCL ] [ ][ ] E-33
[ SAVE ] [ B ] [ ] 1 (3) Add 3 to variable B [ ALPHA ] [ B ] [+]3[ ] 2 (4) Clear all variables [ 2nd ] [ CL-VAR ] [ 2nd ] [ RCL ] Example 6 (1) Set PROG 1 = cos (3A) + sin (5B), where A = 0, B = 0 [ cos ] 3 [ ALPHA ] [ A ] [ ] [ + ] [ sin ] 5 [ ALPHA ] [ B ] [ ] [ SAVE ] [ PROG ] 1 [ ] 3 (2) Set A = 20,B = 18, get PROG 1 = cos (3A) + sin (5B) = 1.
[ PROG ] 1 [ [ CL / ESC ] 20 [ ][ [ ] CL ][ ] / ESC ] 18 Example 7 (1) Expand the number of memories from 26 to 28 [ MATH ] [ MATH ] [ MATH ] [ MATH ] [ ] [ ]2 [ ] 4 (2) Assign 66 to variable A [ 27 ] 66 [ SAVE ] [ A ] [ ALPHA ] [ [ ] ] 27 [ ] E-35
5 (3) Recall variable A [ 27 ] [ ALPHA ] [ A ] [ ALPHA ] [ [ ] ] 27 [ ] 6 (4) Return memory variables to the default configuration [ MATH ] [ MATH ] [ MATH ] [ MATH ] [ ] [ ]0[ ] Example 8 7 + 10 × 8 2 = 47 7 [ + ] 10 [ × ] 8 [ [ ] ]2 Example 9 – 3.5 + 8 4 = –1.5 [ ( – ) ] 3.
12369 [ × ] 7532 [ × ] 74103 [ ] Example 11 6 7 = 0.857142857 6[ ]7[ [ 2nd ] [ FIX ] [ [ ] ] ][ ] ] [ [ 2nd ] [ FIX ] 4 [ 2nd ] [ FIX ] [ • ] Example 12 1 6000 = 0.0001666...
[ 2nd ] [ SCI / ENG ] [ [ ] ] [ 2nd ] [ SCI / ENG ] [ [ ] ] [ 2nd ] [ SCI / ENG ] [ [ ] ] Example 13 0.0015 = 1.5 × 10 1.5 [ EXP ] [ (–) ] 3 [ –3 ] Example 14 20 G byte + 0.15 K byte = 2.
20 [ 2nd ] [ ENG SYM ] [ [ ] ] ] [ + ] 0.15 [ 2nd ] [ [ ENG SYM ] [ ][ ] Example 15 ( 5 – 2 × 1.5 ) × 3 = 6 [ ( ) ] 5 [ – ] 2 [ × ] 1.
88 [ [ ] 55 [ 2nd ] [ % ] ] Example 18 3 × 3 × 3 × 3 = 81 3[ × ]3[ ] ] [ × ]3[ [ ] 8 Calculate 6 after calculating 3 × 4 = 12 3[ × ]4[ [ ]6[ ] ] Example 19 123 + 456 = 579 123 [ + ] 456 [ 789 – 579 = 210 ] E-40
789 [ – ] [ 2nd ] [ ANS ] [ ] Example 20 ln7 + log100 = 3.945910149 [ ln ] 7 [ [ ] ] [ + ] [ log ] 100 9 10 2 = 100 [ 2nd ] [ 10 x ] 2 [ 10 e –5 ] = 0.
4 [ A b/c ] 2 [ A b/c ] 4 [ ] [ 2nd ] [ A b/c [ ] [ 2nd ] [A b/c d d /e ] /e ] [ ] Example 23 4 [ A b/c ] 1 [ A b/c ] 2 [ 2nd ] [F ] D][ Example 24 8 [ A b/c ] 4 [ A b/c ] 5 [ + ] 3.75 [ ] Example 25 2 rad. = 360 deg.
[ ] 2 [ 2nd ] [ ] [ 2nd ] [ DMS ] [ ][ ] [ ] [ ][ ] Example 26 1.5 = 1O 30 I 0 II ( DMS ) 1.5 [ 2nd ] [ DMS ] [ [ ][ ] ] Example 27 2 0 45 I 10.5 II = 2.752916667 2 [ 2nd ] [ DMS ] [ [ ] [ [ ][ ] 45 [ 2nd ] [ DMS ] ] 10.
[ ][ ] Example 28 sin30 Deg. = 0.5 [ DRG ] [ ] [ sin ] 30 [ ] 11 sin30 Rad. = – 0.988031624 [ DRG ] [ ] ] [ sin ] 30 [ [ ] 12 sin –1 0.5 = 33.33333333 Grad. [ DRG ] [ [ 0.5 [ ] ] [ 2nd ] [ sin ] –1 ] Example 29 cosh1.5+2 = 4.
[ 2nd ] [ HYP ] [ cos ] 1.5 [ ] ][+]2[ 13 sinh –1 7 = 2.644120761 [ 2nd ] [ HYP ] [ 2nd ] [ sin 7[ ] –1 ] Example 30 If x = 5 and y = 30, what are r and 80.53767779 o [ 2nd ] [ R [ [ [ [ = P] ] 5 [ ALPHA ] [ ] [ 2nd ] [ R ? Ans : r = 30.41381265, P][ ] ] 5 [ ALPHA ] [ ] 14 If r = 25 and 20.72593931 ] 30 ] 30 = 56 o what are x and y? Ans : x = 13.
[ 2nd ] [ R [ 56 [ ] ] 25 [ ALPHA ] [ ] [ 2nd ] [ R [ 56 [ P][ P][ ] ][ ] 25 [ ALPHA ] [ ] ] ] Example 31 5 ! = 120 5 [ MATH ] [ ][ ] 15 Generate a random number between 0 and 1 [ MATH ] [ [ ][ ] ] E-46
16 Generate a random integer between 7 and 9 [ MATH ] [ [ 9[ ] ] 7 [ ALPHA ] [ ] ] 17 RND ( sin 45 Deg. ) = 0.71 ( FIX = 2 ) [ MATH ] [ ][ ] [ ] [ sin ] 45 [ 2nd ] [ FIX ] [ ][ ][ ] [ ][ ] 18 MAX ( sin 30 Deg. , sin 90 Deg. ) = MAX ( 0.5, 1 ) = 1 [ MATH ] [ MATH ] [ [ [ ] [ sin ] 30 ] [ ALPHA ] [ ] [ sin ] 90 ] 19 MIN ( sin 30 Deg., sin 90 Deg. ) = MIN ( 0.5, 1 ) = 0.
[ MATH ] [ MATH ] [ [ [ [ ] ] [ sin ] 30 ] [ ALPHA ] [ ] [ sin ] 90 ] 20 SUM (13, 15, 23 ) = 51 [ MATH ] [ MATH ] [ ] [ ] 13 [ ALPHA ] [ 15 [ ALPHA ] [ ] 23 [ ] ] 21 AVG (13, 15, 23 ) = 17 [ MATH ] [ MATH ] [ [ ] ] [ ] 13 [ ALPHA ] [ 15 [ ALPHA ] [ ] 23 [ ] ] 22 Frac (10 8 ) = Frac ( 1.25 ) = 0.
[ ] 10 [ ]8[ ] 23 INT (10 8 ) = INT ( 1.25 ) = 1 [ MATH ] [ MATH ] [ MATH ] [ ] [ ] 10 [ ]8[ ] 24 SGN ( log 0.01 ) = SGN ( – 2 ) = – 1 [ MATH ] [ MATH ] [ MATH ] [ ] [ [ ] [ log ] 0.01 ] 25 ABS ( log 0.01) = ABS ( – 2 ) = 2 [ MATH ] [ MATH ] [ MATH ] [ ][ ] [ [ ] [ log ] 0.
26 7 ! [ ( 7 – 4 ) ! ] = 840 7 [ MATH ] [ MATH ] [ MATH ] [ MATH ] ]4[ [ 27 7 ! ] [ ( 7 – 4 ) ! × 4 ] = 35 7 [ MATH ] [ MATH ] [ MATH ] ] [ MATH ] [ [ ]4[ ] Example 32 1.
4 [ 2nd ] [ [ ] ] 81 30 7 4 = 2401 7 [ 2nd ] [ ^ ] 4 [ ] Example 33 1 yd 2 = 9 ft 2 = 0.000000836 km 2 1 [ 2nd ] [ CONV ] [ 2nd ] [ CONV ] [ ] [ ] [ ] [ ][ ] Example 34 3 × G = 2.
3 [ × ] [ 2nd ] [ CONST ] [ ][ ] [ ][ ] Example 35 Apply the multi-statement function to the following two statements: ( E=15 ) 15 [ SAVE ] [ E ] [ ] [ ALPHA ] [ E ] [ × ] 13 [ ALPHA ] [ ]180 [ ] [ ALPHA ] [ E ] [ ] [ ] [ ] Example 36 Graph Y = e X E-52
[ Graph ] [ 2nd ] [ e x ] [ ] Example 37 (1) Range : X min = – 180, X max = 180, X scl = 90, Y min = – 1.25, Y max = 1.25, Y scl = 0.5, Graph Y = sin (2 x) [ Range ] [ ( – ) ] 180 [ ] 180 [ [ (–) ] 1.25 [ 0.5 ] 90 [ ] 1.
[G T] [G T] 31 (2) Zoom in and zoom out on Y = sin (2x) [ 2nd ] [ Zoom x f ] [ 2nd ] [ Zoom x f ] [ 2nd ] [ Zoom Org ] [ 2nd ] [ Zoom x 1 / f ] [ 2nd ] [ Zoom x 1 / f ] Example 38 Superimpose the graph of Y = – X + 2 over the graph of Y = X 2 –6X–8 E-54 3 +3X
[ Range ] [ (–) ] 8 [ ]8 [ ]2[ ] [ (–) ] 15 [ 15 [ ]5 ] ] [ Graph ] [ ALPHA ] [ [ X ] [ 2nd ] [ x 3 ] [ + ] 3 [ ALPHA ] [ X ] [ x 2 ] [ – ] 6 [ ALPHA ] [ X ] [ – ] 8 [ ] [ Graph ] [ (–) ] [ ALPHA ] [ X ] [+]2 [ ] Example 39 Superimpose the graph of Y = cos (X) over the graph of Y = sin ( x ) [ Graph ] [ sin ] [ ] [ Graph ] [ cos ] [ ALPHA ] [ X ] [ ] Example 40 Use Trace function to analyze the graph Y = cos ( x ) E-55
[ Graph ] [ cos ] [ ] [ Trace ] [ ][ ][ [ 2nd ] [ X ] Y] Example 41 Draw and scroll the graph for Y = cos ( x ) [ Graph ] [ cos ] [ [ ] [ ][ [ [ ] ] [ ] ] ] [ ] [ ] Example 42 Place points at ( 5 , 5 ), ( 5 , 10 ), ( 15 , 15 ) and ( 18, 15 ), and then use the Line function to connect the points.
[ Range ] 0 [ ] 35 [ ]5 [ ]0[ ] 23 [ ]5 ] [ 2nd ] [ PLOT ] 5 [ [ ALPHA ] [ ]5 [ ] [ 2nd ] [ X Y] [ 2nd ] [ X Y ] [ 2nd ] [ PLOT ] 5 [ ALPHA ] [ ] 10 [ ] [ 2nd ] [ LINE ] [ ] [ 2nd ] [ PLOT ] 15 [ ALPHA ] [ ] 15 [ ] [ 2nd ] [ LINE ] [ ] [ 2nd ] [ PLOT ] 18 [ ALPHA ] ] 15 [ ] [ ][ [ ][ ][ ][ ] [ ][ ][ ] [ 2nd ] [ LINE ] [ ] E-57
Example 43 Enter the data: X LSL = 2, X USL = 13, X 1 = 3, FREQ 1 = 2, X 2 = 5 , FREQ 2 = 9, X 3 = 12, FREQ 3 = 7, then find = 7.5, Sx = 3.745585637, Cax = 0 , and Cpx = 0.
[ 2nd ] [ STATVAR ] [ ] [ ] [ Graph ] [ ] ] [ [ 2nd ] [ STATVAR ] [ [ ][ ][ ] [ ] ] [ Graph ] [ ] E-59
[ 2nd ] [ STATVAR ] [ Graph ] [ ][ ] ] [ Example 44 Enter the data : X LSL = 2, X USL = 8, Y LSL = 3, Y USL = 9, X 1 = 3, Y 1 = 4, X = 5, Sx = 2, Cax = 2 = 5 , Y 2 = 7, X 3 = 7, Y 3 = 6, then find 0, Cay = 0.
[ 2nd ] [ STATVAR ] [ [ ] [ [ ][ ][ [ ] ][ ][ ][ ][ ] ] ] [ Graph ] Example 45 In the data in Example 44, change Y 1 = 4 to Y 2 = 8, then find Sx = 2.
[ 2nd ] [ STATVAR ] [ [ ] ] Example 46 Enter the data : a x = 2, X 1 = 3, FREQ 1 = 2, X 2 = 5 , FREQ 2 = 9, X 3 = 12, FREQ3 = 7, then find t = –1.510966203, P( t ) = 0.0654, Q( t ) = 0.4346, R ( t ) =0.
[ ] [ ] Example 47 Given the following data, use linear regression to estimate x ’ =? for y =573 and y ’= ? for x = 19 X 15 17 21 28 Y 451 475 525 678 [ MODE ] 1 [ ] [ ] [ ] [ DATA ] [ 17 [ 525 [ ] 15 [ ] 475 [ ] 28 [ ] 451 [ ] 21 [ ] 678 ] ] E-63
[ 2 nd ] [ STATVAR ] [ Graph ] [ 2nd ] [ STATVAR ] [ [ ][ ] [ ] ] 573 [ ] [ 2nd ] [ STATVAR ] [ [ ][ ][ ] [ ] 19 [ ] ] Example 48 Given the following data, use quadratic regression to estimate y ’ = ? for x = 58 and x ’ =? for y =143 X 57 61 67 Y 101 117 155 [ MODE ] 1 [ ] E-64
[ ][ ][ [ ] [ DATA ] [ ] 57 [ 61 [ ] 117 [ [ ]155 ] ] 101 [ ] 67 ] [ 2nd ] [ STATVAR ] [ Graph ] [ 2 nd ] [ STATVAR ] [ [ ][ ] [ [ ] 143 [ ] ] ] [ 2nd ] [ STATVAR ] [ [ ][ ][ ] ] E-65
[ ] 58 [ ] Example 49 31 10 = 1F16 = 11111 2 = 37 8 [ MODE ] 2 31 [ ] [ dhbo ] [ ] [ ] [ ] Example 50 4777 10 = 1001010101001 2 E-66
[ MODE ] 2 [ dhbo ] [ [ ] [ ] [ dhbo ] [ [ ] 4777 [ [ ] [ ] [ ] ] ][ ] ] Example 51 What is the negative of 3A [ MODE ] 2 [ dhbo ] [ [ [ 16 ? Ans : FFFFFFC6 ] ] [ NEG ] 3 [ /A ] ] Example 52 1234 10 + 1EF 16 24 8 = 2352 8 = 1258 E-67 10
[ MODE ] 2 [ dhbo ] [ [ ] [ dhbo ] [ [ ] 1234 [ + ] [ dhbo ] [ [ ][ ] ][ ] ] 1[ IE ] [ IF ] [ ] [ dhbo ] [ [ ] 24 [ ] [ dhbo ] [ ][ ] ][ ] ][ ][ ] Example 53 E-68
1010 2 AND ( A 16 OR 7 [ MODE ] 2 [ dhbo ] [ [ ] [ [ ][ [ ] [ dhbo ] [ ] [ ) = 1010 2 = 10 10 ] ][ ] ] 1010 [ AND ] [ ( ) ] [ dhbo ] [ [ [ 16 ][ ][ ][ ] ] [ /A ] [ OR ] [ dhbo ] ][ ] ]7[ [ dhbo ] [ ] ][ ] Example 54 Create a program to perform arithmetic calculation with complex numbers Z 1 = A + B i, Z 2 = C + D i • Sum : Z 1 + Z 2 = ( A + B ) + ( C + D ) i • Difference : Z 1 – Z 2 = ( A – B ) + ( C – D ) i • Product : Z 1 × Z 2 = E + F i = ( AC – BD ) + ( AD + BC ) i E-69
• Quotient : Z 1 Z 2 = E + F i = RUN When the message “1 : + ”, “ 2 : – ”, “ 3 : × ”, “ 4 : / ” appears on the display, you can input a value for “ O ” that corresponds to the type of operation you want to performed, as follows: 1 for Z 1 + Z 2 2 for Z 1 – Z 2 3 for Z 1 × Z 2 4 for Z 1 Z2 (1) E-70
[ ] ( 5 Seconds ) [ ]1 [ 5[ 14 ] 17 [ ] ][(–)]3[ [ ] ] (2) [ ] ( 5 Seconds ) [ ]2 E-71
[ 13 [ ] 10 [ ]6[ [ ] ] ] 17 (3) [ ] ( 5 Seconds ) [ ]3 [ ]2[ [(–)]5[ [ ] 17 [ ] ] 11 ] (4) E-72
[ ] ( 5 Seconds ) [ ]4 [ [ ]6[ ]5 ][(–)]3[ [ ] ]4 Example 55 Create a program to determine solutions to the quadratic equation A X 2 + B X + C = 0, D = B 2 – 4AC 1) D > 0 , , 2) D = 0 3) D < 0 , , E-73
RUN (1) 2 X – 7 X + 5 = 0 2 [ ] 2[ [ ][(–)]]7 ]5 [ ] (2) 25 X 2 – 70 X + 49 = 0 [ 25 [ 70[ X 1 = 2.5 , X 2 = 1 X = 1.
[ ] (3) X 2 + 2 X + 5 = 0 [ X1=–1+2i,X2=–1–2i ] 1[ ]2[ [ ]5 ] [ [ [ [ ] ] ] ] [ [ [ [ ] ] ] ] [ [ [ [ ] ] ] ] [ [ [ [ ] ] ] ] Example 56 Create a program to generate a common difference sequence ( A : First item, D : common difference, N : number ) Sum : S ( N ) = A+(A+D)+(A+2D)+(A+3D)+...
RUN When the message “ 1: A(N), 2 :S(N) ” appears on the display, you can input a “ P ” value to specify the type of operation to be performed: 1 for A(N) 2 for S(N) 32 (1) A = 3 , D = 2, N = 4 [ ] ( 5 Seconds ) 1[ 2[ [ A(N) = A (4) = 9 ]3[ ]4 ] ] E-76
(2) A = 3 , D = 2, N = 12 [ ] ( 5 Seconds ) 2[ 2[ [ S (N) = S (12) = 168 ]3[ ] 12 ] ] Example 57 Create a program to generate a common ratio sequence ( A : First item, R : common ratio, N : number ) Sum : S ( N ) = A + AR + AR 2 + AR3....
RUN When the message “ 1: A(N), 2 :S(N) ” appears on the display, you can input a “ P ” value to specify the type of operation to be performed: 1 for A(N) 2 for S(N) (1) A = 5 , R = 4, N = 7 [ 1[ 4[ A (N) = A (7) = 20480 ] ( 5 Seconds ) ]5[ ]7 ] E-78
[ ] S (N) = S (9) = 436905 (2) A = 5 , R = 4, N = 9 [ ] ( 5 Seconds ) 2[ 4[ [ ]5[ ]9 ] ] (3) A = 7 ,R = 1, N = 14 [ 2[ 1[ S (N) = S (14) = 98 ] ( 5 Seconds ) ]7[ ] 14 ] E-79
[ ] Example 58 Create a program to determine the solutions for linear equations of the form: RUN [ ] E-80
4 [ 30 [ [ ][(–)]1[ ]5[ ] 17 [ ] ] ]9 Example 59 Create three subroutines to store the following formulas and then use the GOSUB-PROG command to write a mainroutine to execute the subroutines.
RUN N = 1.5, I = 486, A = 2 VOLTAGE = 2 [ CHARGE = 4.5, POWER = 243, ] 1.
486 [ ]2 [ ] ( 5 Seconds ) Example 60 Create a program that graphs Y = – and Y = 2 X with the following range settings: X min = –3.4, X max = 3.
[G T] Example 61 Use a FOR loop to calculate 1 + 6 = ? , 1 + 5 = ? 1 + 4 = ?, 2 + 6 = ?, 2 + 5 = ? 2 + 4 = ? RUN [ ] E-84
Example 62 Set the program type to “BaseN” and evaluate ANS = 1010 2 AND ( Y OR 7 16 ) (1) If Y = /A [ 16 , Ans = 10 10 ] [ dhbo ] [ [ ]/A [ ] ][ ][ ] (2) If Y =11011 8 , Ans = 1010 2 EDIT E-85
[ ] [ ] [ dhbo ] [ [ ] ][ ] RUN [ ] [ dhbo ] [ ][ [ ] 11011 [ ] ] Example 63 Create a program to evaluate the following, and insert a display result command ( ) to check the content of a memory variable (A × B) B = log ( A + 90 ), C = 13 × A, D = 51 E-86
RUN A = 10 [ C = 130 , D = 2.
hp 9g Calculatrice graphique Table des Matières Chapitre 1 : Fonctionnement général ........................... 4 Alimentation ..................................................................... 4 Allumage et extinction .................................................................. 4 Remplacement des piles ................................................................ 4 Fonction d'extinction automatique................................................. 4 Réinitialisation .............................
Format d'affichage .......................................................... 13 Calculs entre parenthèses................................................. 14 Calculs de pourcentage.................................................... 14 Répétitions de calculs....................................................... 14 Fonction réponse ............................................................. 14 Chapitre 4 : Calculs mathématiques courants............. 14 Logarithme et exponentielle .......................
Correction de données statistiques.................................... 21 Distribution de probabilité (données 1-Var) ....................... 22 Calculs de régression ....................................................... 22 Chapitre 7 : Calculs en BaseN................................... 23 Expressions négatives ...................................................... 24 Opérations arithmétiques dans d'autres bases .................. 24 Opérations logiques ..................................................
Chapitre 1 : Fonctionnement général Alimentation Allumage et extinction Pour allumer la calculatrice, appuyez sur [ ON ]. Pour éteindre la calculatrice, appuyez sur [ 2nd ] [ OFF ]. Remplacement des piles La calculatrice est alimentée par deux piles boutons alcalines (GP76A ou LR44). Quand les piles faiblissent, le témoin LOW BATTERY apparaît à l'écran. Remplacez les piles dès que possible. Pour remplacer les piles : 1. 2. 3. 4. 5.
Caractéristiques de l'écran Affichage graphique Graphique Ligne de résultat Affichage de calcul Ligne d'entrée Ligne de résultat Ligne d'entrée Affiche une entrée jusqu'à 76 chiffres. Les entrées comportant plus de 11 chiffres défilent vers la gauche. A l'entrée du 69ème chiffre d'une même entrée, le curseur passe de à pour vous indiquer que vous approchez la limite d'entrée. Si vous devez entrer plus de 76 chiffres, divisez votre calcul en deux ou plusieurs parties.
HYP Une fonction trigonométrique hyperbolique va être calculée La valeur affichée est un résultat intermédiaire Il y a des chiffres à gauche ou à droite de l'affichage Des résultats précédents ou suivants peuvent être affichés. Ces indicateurs clignotent pendant l'exécution d'une opération ou d'un programme. Chapitre 2 : Avant de commencer un calcul Changement de mode Appuyez sur [ MODE ] pour afficher le menu de modes. Vous pouvez choisir un des quatre modes : 0 MAIN, 1 STAT, 2 BaseN, 3 PROG.
Utilisation des touches 2nd et ALPHA Pour utiliser une fonction à étiquette jaune, appuyez sur [ 2nd ] puis sur la touche correspondante. A l'appui sur la touche [ 2nd ], l'indicateur 2nd apparaît pour indiquer que vous allez sélectionner la 2ème fonction de la touche suivante. Si vous appuyez sur [ 2nd ] par erreur, appuyez à nouveau sur [ 2nd ] pour effacer l'indicateur 2nd. L'appui sur [ ALPHA ] [ 2nd ] verrouille la calculatrice en mode 2ème fonction.
Remarque : L'entrée précédente n'est pas effacée quand vous appuyez sur [ CL/ESC ] ou quand la calculatrice est éteinte, mais elle est effacée au changement de mode. Mémoires Mémoire de travail Appuyez sur [ M+ ] pour ajouter un résultat à la mémoire de travail. Appuyez sur [ 2nd ] [ M– ] pour soustraire la valeur de la mémoire de travail. Pour rappeler la valeur en mémoire de travail, appuyez sur [ MRC ]. Pour effacer la mémoire de travail, appuyez deux fois sur [ MRC ]. Voir Exemple 4.
Nombre de mémoires Nombre d'octets restants Remarque : Pour ramener la mémoire en configuration standard – 26 mémoires – spécifiez Defm 0. Les mémoires étendues sont appelées A [ 1 ] , A [ 2 ] etc et peuvent être utilisées comme des variables de mémoire standard. Voir Exemple 7. Remarque : En utilisant des variables de tableau, prenez garde à éviter le recouvrement des zones de mémoire.
19. Opérateurs de comparaison : = =, < , >, ≠, ≤ , ≥ 20. AND, NAND (calculs en BaseN seulement) 21. OR, XOR, XNOR (calculs en BaseN seulement) 22. Conversions (A b/c d/e, F D, DMS) Quand des fonctions de même priorité sont en séquence, elles sont évaluées de droite à gauche. Par exemple : e X ln120 → e X { ln (120 ) } Sinon, l'évaluation s'effectue de gauche à droite. Les fonctions composées sont exécutées de droite à gauche.
x 2 x x -1 x < 1 × 10 X! P ( x, y ) R (r,θ) DMS < 1 × 10 50 100 , x≠0 0 ≦ x ≦ 69, x est un entier. x 2 + y 2 <1 x 10 100 0 ≦ r< 1 × 10 100 Deg:│θ│<4.5 × 10 10 deg Rad:│θ│<2.5 × 10 8πrad Grad:│θ│<5 × 10 10 grad mais pour tan x Deg:│θ│≠90 (2n+1) π Rad:│θ│≠ 2 (2n+1) Grad:│θ│≠100 (2n+1) (n est un entier) │D│, M, S < 1 × 10 100, 0 ≦ M, S, x < 10 100 y > 0 : x≠0, -1 × 10 100 < log y <100 y = 0: x > 0 y < 0 : x = 2n+1, I/n, n est un entier.
0≦x≦17777777777 (pour zéro ou positif) HEX : 80000000≦x≦FFFFFFFF (pour négatif) 0≦x≦7FFFFFFF (pour zéro ou positif) Erreurs Lors d'une tentative de calcul interdit ou d'erreur dans un programme, un message d'erreur apparaît brièvement quand le curseur passe sur l'emplacement de l'erreur. Voir Exemple 3. Les conditions suivantes donnent une erreur: Indicateur Signification DOMAIN Er 1. Vous avez indiqué un argument hors de la plage autorisée. 2. FREQ (en statistiques 1-VAR) < 0 ou non entier. 3.
de programme qui contient déjà un autre programme. EMPTY Er Trentative d'exécution d'un programme depuis une zone de programme qui ne contient pas d'équation ni de programme. MEMORY Er 1. L'extension de mémoire dépasse le nombre de pas de programme restants. 2. Tentative d'utilisation d'une mémoire étendue alors qu'aucune mémoire n'a été étendue. DUPLICATE Le nom d'étiquette est déjà utilisé. LABEL Appuyez sur [ CL/ESC ] pour effacer un message d'erreur.
Calculs entre parenthèses • • Les opérations entre parenthèses sont toujours exécutées en premier. Il est possible d'utiliser jusqu'à 13 parenthèses consécutives dans un même calcul. Voir Exemple 15. Les parenthèes fermantes qui devraient être entrées immédiatement avant l'appui sur la touche [ ] peuvent être omises. Voir Exemple 16. Calculs de pourcentage [ 2nd ] [ % ] divise le nombre affiché par 100.
• Dans un calcul sur des fractions, les fractions sont réduites chaque fois que c'est possible. Cette opération est effectuée en appuyant sur [ + ], [ – ], [ × ], [ ] ) ou [ ]. Appuyez sur [ 2nd ] [ A b/c d/e ] pour convertir un nombre mixte en fraction non réduite et vice versa. Voir Exemple 22. • Pour convertir une valeur décimale en fraction et vice versa, appuyez D ] et [ ]. Voir Exemple 23.
Les touches [ 2nd ] [ HYP ] permettent d'effectuer des calculs hyperboliques et hyperboliques inverses : sinh, cosh, tanh, sinh-1, cosh-1 et tanh-1. Voir Exemple 29. Remarque : Avant d'effectuer un calcul hyperbolique ou hyperbolique inverse, vérifiez que vous avez spécifié l'unité d'angle appropriée. Transformations de coordonnées Appuyez sur [ 2nd ] [ R P ] pour afficher un menu de conversion de coordonnées rectangulaires en coordonnées polaires ou vice versa. Voir Exemple 30.
Vous pouvez convertir des nombres d'unités métriques en unités anglo-saxonnes (imperial) et vice versa. Voir Exemple 33. La procédure est la suivante : 28. Entrez le nombre à convertir. 29. Appuyez sur [ 2nd ] [ CONV ] pour afficher le menu d'unités. Il existe 7 menus de distance, de surface, de température, de capacité, de masse, d'énergie et de pression. 30. Appuyez sur [ ] ou [ ] pour faire défiler la liste d'unités pour ].
33. Appuyez sur [ 2nd ] [ CONST ] pour afficher le menu de constantes physiques. 34. Faites défiler le menu pour souligner la constante voulue. 35. Appuyez sur [ ]. (Voir Exemple 34.) Fonctions de plusieurs expressions Les fonctions de plusieurs expressions sont formées de l'association d'un certain nombre d'expressions individuelles à exécuter en séquence. Vous pouvez utiliser des expressions multiples dans des calculs manuels comme dans des programmes.
Appuyez sur [ G T ] pour passer de l'affichage graphique à l'affichage texte et vice versa. Pour effacer le graphique, appuyez sur [ 2nd ] [ CLS ]. (Mode graphique) (Mode texte) (Mode graphique) Fonction zoom La fonction zoom permet d'agrandir ou de réduire le graphique. Appuyez sur [ 2nd ] [ Zoom x f ] pour indiquer le facteur d'agrandissement du graphique, ou sur [ 2nd ] [ Zoom x 1/f ] pour indiquer le facteur de réduction.
Fonction de tracé et de ligne La fonction de tracé permet de marquer un point sur l'écran d'affichage d'un graphique. Le point peut être déplacé vers la gauche, la droite, le haut ou le bas par les touches de curseur. Les coordonnées du point sont affichées. Quand le pointeur est à l'endroit voulu, appuyez sur [ 2nd ] [ PLOT ] pour tracer un point. Le point clignote à l'emplacement tracé. Il est possible de relier deux points par un segment de droite en appuyant sur [ 2nd ] [ LINE ]. Voir Exemple 42.
CV x ou CV y Coefficient de variation de toutes les valeurs x ou y. R x ou R y Etendue de toutes les valeurs x ou y. 43. Pour tracer des graphiques statistiques 1-VAR, appuyez sur [ Graph ] sur le menu STATVAR. Il existe trois types de graphiques en mode 1-VAR : N-DIST (distribution normale), HIST (histogramme), SPC (contrôle de processus statistique). Sélectionnez le type de graphique voulu et appuyez sur [ ]. Si vous n'indiquez pas d'étendue d'affichage, le graphique s'affiche avec l'étendue optimale.
Voir Exemple 45. 50. Appuyez sur [ DATA ]. 51. Pour modifier les données, sélectionnez DATA-INPUT. Pour modifier les limites de spécififcation supérieure ou inférieure, sélectionnez LIMIT. Pour changer ax, sélectionnez DISTR. ] pour faire défiler les données et afficher l'entrée à 52. Appuyez sur [ modifier. 53. Entrez les nouvelles données. Les nouvelles données entrées remplacent les anciennes. 54. Appuyez sur [ ] ou [ ] pour enregistrer la modification.
59. Sélectionnez une option de régression sur le menu REG et appuyez sur [ ]. 60. Appuyez sur [ DATA ], sélectionnez DATA-INPUT sur le menu et ]. appuyez sur [ 61. Entrez une valeur x et appuyez sur [ ]. ]. 62. Entrez la valeur y correspondante et appuyez sur [ 63. Pour entrer d'autres données, répétez à partir de l'étape 3. 64. Appuyez sur [ 2nd ] [ STATVAR ]. 65. Appuyez sur [ ] pour faire défiler les résultats et trouver les ][ variables de régression recherchées (voir tableau ci-dessous).
Appuyez sur [ ] pour utiliser la fonction de bloc, qui affiche un résultat en octal ou binaire s'il dépasse 8 chiffres. Il est possible d'afficher jusqu'à 4 blocs. Voir Exemple 50. Expressions négatives Dans les bases binaire, octale et hexadécimale, les nombres négatifs sont exprimés sous forme de compléments. Le complément est le résultat de la soustraction du nombre de 10000000000 dans la base considérée. Pour cela, appuyez sur [ NEG ] dans une base non décimale. Voir Exemple 51.
pas restants diminue aussi lors de la conversion de pas en mémoires. Voir Variables de tableau ci-dessus. Type de programme : Vous devez indiquer dans chaque programme le mode dans lequel la calculatrice doit exécuter le programme. Pour effectuer des calculs ou des conversions en base binaire, octale ou hexadécimale, choisissez BaseN ; sinon, choisissez MAIN. Zone de programme : Il existe 10 zones de stockage de programme (P0–P9 ). Si une zone comporte un programme, son numéro est affiché en indice.
⇒ Si la condition est vraie, l'instruction indiquée après THEN est exécutée, sinon c'est l'instruction indiquée après ELSE qui est exécutée. Commandes de branchement Lbl n ⇒ Une commande Lbl n marque un point de destination d'une commande de branchement GOTO n. Chaque nom d'étiquette (Lbl) doit être unique (c’est-à-dire non répété dans la même zone de programme). Le suffixe d'étiquette n doit être un nombre compris entre 0 et 9.
Boucle For FOR ( condition de départ; condition de poursuite; réévaluation ) { instruction } ⇒ Une boucle FOR permet de répéter un ensemble d'actions comparables tant que le compteur se trouve entre les valeurs indiquées. Par exemple: FOR ( A = 1 ; A ≤ 4 ; A + + ) { C = 3 × A ; PRINT ” ANS = ” , C } END ⇒ Résultat : ANS = 3, ANS = 6, ANS = 9, ANS = 12 Le traitement de cet exemple est le suivant : 67. FOR A = 1: Initialise la valeur de A à 1.
73. Entrez les commandes de votre programme. • Vous pouvez entrer les fonctions normales de la calcultrice comme commandes. • Pour entrer une instruction de contrôle de programme, appuyez sur [ 2nd ] [ INST ] et faites votre choix. • Pour entrer un espace, appuyez sur [ ALPHA ] [ SPC ]. 74. Un point-virgule (;) indique la fin d'une commande. Pour entrer plus d'une commande sur une même ligne, séparez-les par un point-virgule. Par exemple : Ligne 1 : INPUT A ; C = 0.
remplacer successivement des graphiques. Toutes les commandes de graphique (sauf trace et zoom) peuvent être incluses dans les progammes. Les valeurs d'étendue peuvent aussi être indiquées dans le programme.
123 [ × ] 45 [ [ ][ ][ [ 2nd ] [ [ ][ ] ] [ DEL ] ] ]7[ ] Exemple 2 Après exécution de 1 + 2, 3 + 4, 5 + 6, rappeler chaque expression 1[+]2[ ]3[+]4 ]5[+]6[ ] [ [ ] [ ] [ ] Exemple 3 F-30
Entrer 14 14 [ 0 × 2.3 puis le corriger en 14 ] 0 [ × ] 2.3 [ ] ( 5 Seconds ) [ ]1[ ] Exemple 4 [ ( 3 × 5 ) + ( 56 7 ) – ( 74 – 8 × 7 ) ] = 5 3 [ × ] 5 [ M+ ] 56 [ ] 7 [ M+ ] [ MRC ] [ ] 74 [ – ] 8 [ × ] 7 [ 2nd ] [ M– ] [ MRC ] [ ] F-31 10 × 2.
[ MRC ] [ MRC ] [ CL / ESC ] Exemple 5 (1) Attribuer la valeur 30 à la variable A [ 2nd ] [ CL-VAR ] 30 [ SAVE ] [A][ ] 0 (2) Multiplier la variable A par 5 et attribuer le résultat à la variable B 5 [ × ] [ 2nd ] [ RCL ] [ ][ ] ] [ SAVE ] [ B ] [ 1 (3) Ajouter 3 à la variable B [ ALPHA ] [ B ] [+]3[ ] 2 (4) Effacer toutes les variables F-32
[ 2nd ] [ CL-VAR ] [ 2nd ] [ RCL ] Exemple 6 (1) Définir PROG 1 = cos (3A) + sin (5B), où A = 0, B = 0 [ cos ] 3 [ ALPHA ] [ A ] [ ] [ + ] [ sin ] 5 [ ALPHA ] [ B ] [ ] [ SAVE ] [ PROG ] 1 [ ] 3 (2) Définir A = 20,B = 18, appeler PROG 1 = cos (3A) + sin (5B) = 1.
[ MATH ] [ MATH ] [ MATH ] [ MATH ] [ ] [ ]2 [ ] 4 (2) Attribuer la valeur 66 à la variable A [ 27 ] 66 [ SAVE ] [ A ] [ ALPHA ] [ [ ] ] 27 [ ] 5 (3) Rappeler la variable A [ 27 ] [ ALPHA ] [ A ] [ ALPHA ] [ [ ] ] 27 [ ] 6 (4) Ramener les variables mémoire à leur configuration par défaut [ MATH ] [ MATH ] [ MATH ] [ MATH ] [ ] [ ]0[ ] Exemple 8 7 + 10 × 8 2 = 47 F-34
7 [ + ] 10 [ × ] 8 [ [ ] ]2 Exemple 9 – 3.5 + 8 4 = – 1.5 [ ( – ) ] 3.5 [ + ] 8 [ [ ] ]4 Exemple 10 12369 × 7532 × 74103 = 6903680613000 12369 [ × ] 7532 [ × ] 74103 [ ] Exemple 11 6 7 = 0.
[ 2nd ] [ FIX ] [ • ] Exemple 12 1 6000 = 0.0001666...
0.0015 = 1.5 × 10 –3 1.5 [ EXP ] [ (–) ] 3 [ ] Exemple 14 20 G octets + 0.15 K octets = 2.000000015 × 10 20 [ 2nd ] [ ENG SYM ] [ [ ] ] [ ] [ + ] 0.15 [ 2nd ] [ ENG SYM ] [ ][ ] Exemple 15 ( 5 – 2 × 1.5 ) × 3 = 6 [ ( ) ] 5 [ – ] 2 [ × ] 1.
120 [ × ] 30 [ 2nd ] [ % ] [ ] 7 88 88 [ [ 55% = 160 ] 55 [ 2nd ] [ % ] ] Exemple 18 3 × 3 × 3 × 3 = 81 3[ × ]3[ [ × ]3[ ] ] ] [ 8 Calculer 6 après calcul de 3 × 4 = 12 3[ × ]4[ [ ]6[ ] ] Exemple 19 123 + 456 = 579 789 – 579 = 210 F-38
123 [ + ] 456 [ ] 789 [ – ] [ 2nd ] [ ANS ] [ ] Exemple 20 ln7 + log100 = 3.945910149 [ ln ] 7 [ [ ] ] [ + ] [ log ] 100 9 10 2 = 100 [ 2nd ] [ 10 x ] 2 [ 10 e –5 ] = 0.
4 [ A b/c ] 2 [ A b/c ] 4 [ ] [ 2nd ] [ A b/c [ ] [ 2nd ] [A b/c d d /e ] /e ] [ ] Exemple 23 4 [ A b/c ] 1 [ A b/c ] 2 [ 2nd ] [F D][ ] Exemple 24 8 [ A b/c ] 4 [ A b/c ] 5 [ + ] 3.75 [ ] Exemple 25 2 rad. = 360 deg.
[ ] 2 [ 2nd ] [ ] [ 2nd ] [ DMS ] [ ][ ] [ ] ][ [ ] Exemple 26 1.5 = 1O 30 I 0 II ( DMS ) 1.5 [ 2nd ] [ DMS ] [ [ ][ ] ] Exemple 27 2 0 45 I 10.5 II = 2.752916667 2 [ 2nd ] [ DMS ] [ [ ] ] 45 [ 2nd ] [ DMS ] [ [ ][ ] 10.
[ ][ ] Exemple 28 sin30 Deg. = 0.5 [ DRG ] [ ] [ sin ] 30 [ ] 11 sin30 Rad. = – 0.988031624 [ DRG ] [ [ ] ] [ sin ] 30 [ ] 12 sin –1 0.5 = 33.33333333 Grad. [ DRG ] [ [ 0.
cosh1.5+2 = 4.352409615 [ 2nd ] [ HYP ] [ cos ] 1.5 [ ] ][+]2[ 13 sinh –1 7 = 2.644120761 [ 2nd ] [ HYP ] [ 2nd ] [ sin 7[ ] –1 ] Exemple 30 Si x = 5 et y = 30, combien valent r et = 80.53767779 o [ 2nd ] [ R [ [ [ [ P] ] 5 [ ALPHA ] [ ] [ 2nd ] [ R ? Ans : r = 30.41381265, P][ ] ] 5 [ ALPHA ] [ ] 14 Si r = 25 and 13.97982259, y ] 30 ] 30 = 56 o combien valent x = 20.
[ 2nd ] [ R [ 56 [ ] ] 25 [ ALPHA ] [ ] [ 2nd ] [ R [ 56 [ P][ P][ ] ][ ] 25 [ ALPHA ] [ ] ] ] Exemple 31 5 ! = 120 5 [ MATH ] [ ][ ] 15 Générer un nombre aléatoire entre 0 et 1 [ MATH ] [ [ ][ ] ] F-44
16 Générer un entier aléatoire entre 7 et 9 [ MATH ] [ [ 9[ ] ] 7 [ ALPHA ] [ ] ] 17 RND ( sin 45 Deg. ) = 0.71 ( FIX = 2 ) [ MATH ] [ ][ ] ] [ sin ] 45 [ 2nd ] [ [ FIX ] [ ][ ][ ] [ ][ ] 18 MAX ( sin 30 Deg. , sin 90 Deg. ) = MAX ( 0.5, 1 ) = 1 [ MATH ] [ MATH ] [ [ [ ] [ sin ] 30 ] [ ALPHA ] [ ] [ sin ] 90 ] 19 MIN ( sin 30 Deg., sin 90 Deg. ) = MIN ( 0.5, 1 ) = 0.
[ MATH ] [ MATH ] [ [ [ [ ] ] [ sin ] 30 ] [ ALPHA ] [ ] [ sin ] 90 ] 20 SUM (13, 15, 23 ) = 51 [ MATH ] [ MATH ] [ ] [ ] 13 [ ALPHA ] [ 15 [ ALPHA ] [ ] 23 [ ] ] 21 AVG (13, 15, 23 ) = 17 [ MATH ] [ MATH ] [ [ ] ] [ ] 13 [ ALPHA ] [ 15 [ ALPHA ] [ ] 23 [ ] ] 22 Frac (10 8 ) = Frac ( 1.25 ) = 0.
[ ] 10 [ ]8[ ] 23 INT (10 8 ) = INT ( 1.25 ) = 1 [ MATH ] [ MATH ] [ MATH ] [ ] [ ] 10 [ ]8[ ] 24 SGN ( log 0.01 ) = SGN ( – 2 ) = – 1 [ MATH ] [ MATH ] [ MATH ] [ ] [ [ ] [ log ] 0.01 ] 25 ABS ( log 0.01) = ABS ( – 2 ) = 2 [ MATH ] [ MATH ] [ MATH ] [ ][ ] [ [ 26 7 ! ] [ log ] 0.
7 [ MATH ] [ MATH ] [ MATH ] [ MATH ] ]4[ [ 27 7 ! ] [ ( 7 – 4 ) ! × 4 ] = 35 7 [ MATH ] [ MATH ] [ MATH ] [ MATH ] [ ] [ ]4[ ] Exemple 32 1.
30 7 4 = 2401 7 [ 2nd ] [ ^ ] 4 [ ] Exemple 33 1 yd 2 = 9 ft 2 = 0.000000836 km 2 1 [ 2nd ] [ CONV ] [ 2nd ] [ CONV ] [ ] ] [ [ ] [ ][ ] Exemple 34 3 × G = 2.
Appliquer la fonction multi-instructions aux deux instructions: ( E = 15 ) 15 [ SAVE ] [ E ] [ ] [ ALPHA ] [ E ] [ × ] 13 [ ALPHA ] [ ]180 [ ] [ APLHA ] [ E ] [ ] [ ] [ ] Exemple 36 Tracer le graphique Y = e X [ Graph ] [ 2nd ] [ e x ] [ ] Exemple 37 (1) Etendue : X min = – 180, X max = 180, X scl = 90, Y min = –1.25, Y max = 1.25, Y scl = 0.
[ Range ] [ ( – ) ] 180 [ ] 180 [ [ (–) ] 1.25 [ 0.5 ] 90 [ ] 1.
[ 2nd ] [ Zoom x f ] [ 2nd ] [ Zoom x f ] [ 2nd ] [ Zoom Org ] [ 2nd ] [ Zoom x 1 / f ] [ 2nd ] [ Zoom x 1 / f ] Exemple 38 Superposer le graphe de Y = – X + 2 sur le graphe de Y = X 3 + 3 X 2 – 6X–8 [ Range ] [ (–) ] 8 [ ]8 [ ]2[ ] [ (–) ] 15 [ ]5 15 [ ] [ ] [ Graph ] [ ALPHA ] [ X ] [ 2nd ] [ x 3 ] [ + ] 3 [ ALPHA ] [ × ] [ x 2 ] [ – ] 6 [ ALPHA ] [ X ] [ – ] 8 [ ] F-52
[ Graph ] [ (–) ] [ ALPHA ] [ X ] [+]2 ] [ Exemple 39 Superposer le graphe de Y = cos (X) sur le graphe de Y = sin ( x ) ] [ Graph ] [ sin ] [ [ Graph ] [ cos ] [ ALPHA ] [ X ] [ ] Exemple 40 Utiliser la fonction Trace pour analyser le graphe Y = cos ( x ) [ Graph ] [ cos ] [ ] [ Trace ] [ ][ ][ ] F-53
[ 2nd ] [ X Y] Exemple 41 Tracer et faire défiler le graphe de Y = cos ( x ) ] [ Graph ] [ cos ] [ [ ] [ ][ [ [ ] ] ] [ ] [ ] [ ] Exemple 42 Placer les points à ( 5 , 5 ), ( 5 , 10 ), ( 15 , 15 ) et ( 18, 15 ), puis utiliser la fonction Line pour relier les points.
[ 2nd ] [ X Y] [ 2nd ] [ X Y ] [ 2nd ] [ PLOT ] 5 [ ALPHA ] [ ] 10 [ ] [ 2nd ] [ LINE ] [ ] [ 2nd ] [ PLOT ] 15 [ ALPHA ] [ ] 15 [ ] [ 2nd ] ] [ LINE ] [ [ 2nd ] [ PLOT ] 18 [ ALPHA ] [ ][ ] 15 [ ] ][ ][ ][ ] [ [ ][ ][ ] [ 2nd ] [ LINE ] [ ] Exemple 43 Entrer les données: X LSL = 2, X USL = 13, X 1 = 3, FREQ 1 = 2, X 2 = 5 , FREQ 2 = 9, X 3 = 12, FREQ 3 = 7, puis trouver = 7.5, Sx = 3.745585637, Cax = 0 , and Cpx = 0.
[ ] [ DATA ] [ [ ]2 [ ] 13 [ ] ] [ DATA ] [ ]3 [ ]2 [ [ ]5[ ]7 ]9[ ] 12 [ 2nd ] [ STATVAR ] [ ] F-56
[ ] [ Graph ] [ [ ] ] [ 2nd ] [ STATVAR ] [ [ ][ ][ ] [ ] ] [ Graph ] [ ] [ 2nd ] [ STATVAR ] [ Graph ] ][ ] [ [ ] F-57
Exemple 44 Entrer les données : X LSL = 2, X USL = 8, Y LSL = 3, Y USL = 9, X 1 = 3, Y 1 = 4, X 2 = 5 , Y 2 = 7, X 3 = 7, Y 3 = 6, puis trouver = 5, Sx = 2, Cax = 0, Cay = 0.
[ ] [ Graph ] Exemple 45 Dans les données de l’Exemple 44, changer Y 1 = 4 en Y 1 = 9 et X 2 = 5 en X 2 = 8, puis trouver Sx = 2.645751311 [ DATA ] [ [ ][ ]9 ]8 [ 2nd ] [ STATVAR ] [ [ ] ] Exemple 46 Entrer les données : a x = 2, X 1 = 3, FREQ 1 = 2, X 2 = 5 , FREQ 2 = 9, X 3 = 12, FREQ3 = 7, puis trouver t = –1.510966203, P( t ) = 0.0654, Q( t ) = 0.4346, R ( t ) =0.
[ [ ] [ DATA ] [ ] ] ]2[ [ [ DATA ] [ ]5[ [ [ ]7 ] ]3[ ]2 ]9[ ] 12 [ 2nd ] [ STATVAR ] [ [ ] [ ] [ ] ] Exemple 47 Avec les données suivantes, utiliser la régression linéaire pour estimer x ’ =? pour y =573 et y ’= ? pour x = 19 X 15 17 21 28 Y 451 475 525 678 F-60
[ MODE ] 1 [ ] [ ] [ ] [ DATA ] [ 17 [ 525 [ ] 15 [ ] 475 [ ] 28 [ ] 451 [ ] 21 [ ] 678 ] ] [ 2 nd ] [ STATVAR ] [ Graph ] [ 2nd ] [ STATVAR ] [ [ ][ ] [ ] 573 [ [ 2nd ] [ STATVAR ] [ [ ][ ][ ] ] ] ] F-61
[ ] 19 [ ] Exemple 48 Avec les données suivantes, utiliser la régression quadratique pour estimer y ’ = ? pour x = 58 et x ’ =? pour y =143 X 57 61 67 Y 101 117 155 [ MODE ] 1 [ ] [ ][ ][ [ ] [ DATA ] [ ] 57 [ 61 [ ] 117 [ [ ]155 ] ] 101 [ ] 67 ] [ 2nd ] [ STATVAR ] [ Graph ] F-62
[ 2 nd ] [ STATVAR ] [ [ ][ ] [ ] ] 143 [ [ ] ] [ 2nd ] [ STATVAR ] [ [ ][ ][ ] [ ] 58 [ ] ] Exemple 49 31 10 = 1F16 = 11111 2 = 37 8 [ MODE ] 2 31 [ ] F-63
[ dhbo ] [ ] [ ] [ ] Exemple 50 4777 10 = 1001010101001 [ MODE ] 2 [ dhbo ] [ ] [ [ ] [ dhbo ] [ [ ] 4777 [ [ 2 ] ][ ] ] ] F-64
[ ] [ ] Exemple 51 Quel est le complément de 3A [ MODE ] 2 [ dhbo ] [ [ [ 16 ? Rép : FFFFFFC6 ] ] [ NEG ] 3 [ /A ] ] Exemple 52 1234 10 + 1EF 16 [ MODE ] 2 [ dhbo ] [ [ ] [ dhbo ] [ [ ] 1234 [ + ] 24 8 = 2352 8 = 1258 ] ][ ] F-65 10
[ dhbo ] [ [ ][ ] ] 1[ IE ] [ IF ] [ ] [ dhbo ] [ [ ] 24 [ ] [ dhbo ] [ ][ ][ ] ][ ][ ] Exemple 53 1010 2 AND ( A [ [ [ 16 OR 7 [ MODE ] 2 [ dhbo ] [ ] ][ ] [ dhbo ] [ ] 16 ) = 1010 2 = 10 ] ][ ] F-66 10
[ ] 1010 [ AND ] [ ( ) ] [ dhbo ] [ [ [ [ ][ ][ ][ ] ] [ /A ] [ OR ] [ dhbo ] ][ ] ]7[ [ dhbo ] [ ] ][ ] Exemple 54 Créer un programme de calcul arithmétique sur les nombres complexes Z 1 = A + B i, Z 2 = C + D i • Somme : Z 1 + Z 2 = ( A + B ) + ( C + D ) i • Différence : Z 1 – Z 2 = ( A – B ) + ( C – D ) i • Produit : Z 1 × Z 2 = E + F i = ( AC – BD ) + ( AD + BC ) i • Quotient : Z 1 Z 2 = E + F i = F-67
RUN Quand le message “1 : + ”, “ 2 : – ”, “ 3 : × ”, “ 4 : / ” apparaît à l’écran, vous pouvez entrer une valeur pour “ O ” qui correspond au type d’opération à effectuer : 1 pour Z 1 + Z 2 2 pour Z 1 – Z 2 4 pour Z 1 Z2 3 pour Z 1 × Z 2 (1) F-68
[ ] ( 5 Secondes ) [ ]1 [ 5[ 14 ] 17 [ ] ][(–)]3[ [ ] ] (2) [ ] ( 5 Secondes ) [ ]2 F-69
[ 13 [ ] 10 [ ]6[ [ ] ] ] 17 (3) [ ] ( 5 Secondes ) [ ]3 [ ]2[ [(–)]5[ [ ] 17 [ ] ] 11 ] (4) F-70
[ ] ( 5 Secondes ) [ ]4 [ [ ]6[ ]5 ][(–)]3[ [ ] ]4 Exemple 55 Créer un programme pour trouver les solutions de l’équation du second degré A X 2 + B X + C = 0, D = B 2 – 4AC 1) D > 0 , , 2) D = 0 3) D < 0 , , F-71
RUN (1) 2 X 2 – 7 X + 5 = 0 [ ] 2[ [ ][(–)]]7 ]5 [ ] (2) 25 X 2 – 70 X + 49 = 0 [ X 1 = 2.5 , X 2 = 1 X = 1.
25 [ 70[ ][(–)] ] 49 [ ] (3) X 2 + 2 X + 5 = 0 [ X1=–1+2i,X2=–1–2i ] 1[ ]2[ [ ]5 ] [ [ [ [ ] ] ] ] [ [ [ [ ] ] ] ] [ [ [ [ ] ] ] ] [ [ [ [ ] ] ] ] Exemple 56 Créer un programme pour générer une suite arithmétique ( A : Premier terme, D : raison, N : numéro ) Somme : S ( N ) = A+(A+D)+(A+2D)+(A+3D)+...
RUN Quand le message “ 1: A(N), 2 :S(N) ” apparaît à l’écran, vous pouvez entrer la valeur “ P ” pour indiquer le type d’opération à effectuer : 1 for A(N) 2 for S(N) 32 (1) A = 3 , D = 2, N = 4 [ ] ( 5 Secondes ) 1[ 2[ [ A(N) = A (4) = 9 ]3[ ]4 ] ] (2) A = 3 , D = 2, N = 12 S (N) = S (12) = 168 F-74
[ ] ( 5 Secondes ) 2[ 2[ [ ]3[ ] 12 ] ] Exemple 57 Créer un programme pour générer une suite géométrique ( A : Premier terme, R : raison , N : numéro ) Somme : S ( N ) = A + AR + AR 2 + AR3....
RUN Quand le message “ 1: A(N), 2 :S(N) ” apparaît à l’écran, vous pouvez entrer une valeur “ P ” pour indiquer le type d’opération à effectuer : 1 for A(N) 2 for S(N) (1) A = 5 , R = 4, N = 7 [ 1[ 4[ A (N) = A (7) = 20480 ] ( 5 Secondes ) ]5[ ]7 ] F-76
[ ] S (N) = S (9) = 436905 (2) A = 5 , R = 4, N = 9 [ ] ( 5 Secondes ) 2[ 4[ [ ]5[ ]9 ] ] (3) A = 7 ,R = 1, N = 14 [ 2[ 1[ S (N) = S (14) = 98 ] ( 5 Secondes ) ]7[ ] 14 ] F-77
[ ] Exemple 58 Créer un programme trouvant les solutions des équations linéaires de la forme: RUN [ ] 4 F-78
[ 30 [ [ ][(–)]1[ ]5[ ] 17 [ ] ] ]9 Exemple 59 Créer trois sous-programmes pour enregistrer les formules suivantes puis utiliser la commande GOSUB-PROG pour écrire un pogramme appelant les sous-programmes. Sous-programme 1 : CHARGE = N × 3 Sous-programme 2 : POWER = I A Sous-programme 3 : VOLTAGE = I (B × Q × A) RUN N = 1.5, I = 486, A = 2 VOLATAGE = 2 CHARGE = 4.
[ ] 1.5 [ ] ( 5 Secondes ) 486 [ ]2 [ ] ( 5 Secondes ) Exemple 60 Créer un programme qui trace le graphe de Y = – et Y = 2 X avec les paramètres d’étendue suivants : X min = 3.
= –3.
Exemple 62 Utiliser le type de programme “BaseN” pour évaluer ANS = 1010 2 AND ( Y OR 7 16 ) (1) Si Y = /A [ 16 , Rép = 10 10 ] [ dhbo ] [ ][ ][ ] F-82
[ ]/A [ ] (2) Si Y =11011 8 , Rép = 1010 2 EDIT [ ] [ ] [ dhbo ] [ [ ] ][ ] RUN [ ] [ dhbo ] [ [ ][ ] ] 11011 F-83
[ ] Exemple 63 Créer un programme pour évaluer ce qui suit, et insérer une commande d’affichage de résultat ( ) pour vérifier le contenu d’une variable de mémoire B = log ( A + 90 ), C = 13 × A, D = 51 (A × B) RUN A = 10 [ C = 130 , D = 2.
[ CL/ESC ] [ ] F-85