Operation Manual

Seite 15-5
Die Divergenz eines Vektorfeldes kann mit der Funktion DIV berechnet werden.
Beispielsweise wird für F(X,Y,Z) = [XY,X
2
+Y
2
+Z
2
,YZ] die Divergenz wie folgt im
ALG-Modus berechnet:
Laplace-Operator
Die Divergenz des Gradienten einer Skalarfunktion ergibt einen Operator, der
als Laplace-Operator bezeichnet wird. Der Laplace-Operator einer
Skalarfunktion φ(x,y,z) wird somit durch
angegeben. Die partielle Differenzialgleichung
2
φ = 0 wird als Laplace-
Gleichung bezeichnet.
Der Laplace-Operator einer Skalarfunktion kann mit der Funktion LAPL
berechnet werden. Geben Sie beispielsweise zum Berechnen des Laplace-
Operators der Funktion φ(X,Y,Z) = (X
2
+Y
2
)cos(Z) Folgendes ein:
Rotation
Die Rotation eines Vektorfeldes F(x,y,z) = f(x,y,z)i+g(x,y,z)j+h(x,y,z)k wird
durch das Kreuzprodukt des Del-Operators mit dem Vektorfeld definiert, d. h.:
2
2
2
2
2
2
2
xxx
+
+
==
φφφ
φφ
[] [] []
),,(),,(),,( zyxhzyxgzyxf
zyx
curl
=×=
kji
FF