Operation Manual
Blz. 16-34
U ziet dat de reeks, met 5 termen, de grafiek van de functie zeer dicht benadert
in het interval 0 tot 2 (d.w.z. door de periode T = 2). U kunt ook een
periodiciteit zien in de grafiek van de reeks. Deze periodiciteit is gemakkelijk te
visualiseren door het x-bereik van het diagram uit te breiden naar (-0.5,4):
Fourierreeks voor een zaagtandgolf
Bekijk de functie
waarvan we aannemen dat deze periodiek is met periode T = 2. Deze functie
kan worden gedefinieerd in de rekenmachine in de ALG-modus met de
uitdrukking
DEFINE(‘g(X) = IFTE(X<1,X,2-X)’)
Als u met dit voorbeeld bent begonnen nadat u voorbeeld 1 heeft afgemaakt,
heeft u al een waarde van 2 opgeslagen in de CAS-variabele PERIOD.
Controleer, als u hier niet zeker van bent de waarde van deze variabele en sla
zo nodig een 2 op. De coëfficiënt c
0
voor de Fourierreeks wordt als volgt
berekend:
De rekenmachine zal om de Approx-modus vragen vanwege de integratie van
de functie IFTE () in de integrand. Indien u accepteert geeft de verandering
naar Approx c
0
= 0.5. Gebruik nu een generische uitdrukking om de
coëfficiënt c
n
te verkrijgen:
⎩
⎨
⎧
<<−
<<
=
21,2
10,
)(
xifx
xifx
xg