User Manual

Section 4: Using Matrix Operations 133
3. Dimension and enter the elements into matrix A using ´mA, ´>1,
and OA.
4. Key in the eigenvalue and press C. The display shows the correction parameter
||z
(1)
− z
(0)
||
R
.
5. Press ¦ repeatedly until the correction parameter is negligibly small.
6. Press lC repeatedly to view the components of q
k
, the eigenvector.
Example: For matrix A of the previous example,
432
321
210
A
Calculate the eigenvectors q
1
, q
2
, and q
3
.
Keystrokes
Display
|¥
Run mode.
2´m%
2.0000
Reserves registers R
0
through
R
2
.
´U
2.0000
Activates User mode.
3v´mA
3.0000
Dimensions A to 3 × 3.
´>1
3.0000
0OA
0.0000
Enters elements of A
1OA
1.0000
⋮
4OA
4.0000
.8730”
-0.8730
Enters λ
1
=−0.8730
(approximation).
C
0.8982
||z
(1)
− z
(0)
||.*
¦
0.0001
||z
(2)
− z
(1)
||.*
¦
2.4000 -09
||z
(3)
− z
(2)
||.*
¦
1.0000 -10
||z
(4)
− z
(3)
||.*
¦
0.0000
||z
(5)
− z
(4)
||.*
lC
1.0000
lC
0.2254
Eigenvector forλ
1
.
lC
-0.5492
0C
0.8485
Uses λ
2
=0 (approximation).
¦
0.0000
*
The correction norms will vary, depending upon the current random number seed.