Service Manual

15
5c) Initial Harvest Cycle Termination Diagnosis: When the thermistor reaches 48°F
(9°C), CB reads 3.9 kΩ from the thermistor and turns harvest termination over to
the harvest timer (S4 dip switch 1 & 2 and S5 dip switch 4). Check discharge line
temperature. For a thermistor check, see "II.F.Thermistor Check." If 1-min. ll cycle
starts after harvest timer terminates, check that FS is clean and operating properly, see
"II.E. Float Switch Check and Cleaning." If FS is closed, CB proceeds to the next cycle.
Ifnot, replace CB.
Note: The minimum total time allowed by CB for a complete harvest cycle is based on
S5 dip switch 4. Maximum harvest time allowed is 20min.
NOTICE! S4 dip switch 7 must remain on. Otherwise, PM will not energize during
the last seconds of harvest.
6) Freeze Cycle – LED 1 is on. Comp and PM continue. FM and LLV energize. HGV and
X10 relay de-energize. Appliance is held in freeze by a 5-min. short cycle protection
timer. After 5-min. short cycle protection timer terminates and FS opens, freeze cycle
terminates.
Note: PM power supply switches from CBK1 #5(DBU) in harvest to K1 #4 (R) in freeze.
Slush Control: When slush control is enabled (S5 dip switch 5 "ON"), PM de-energizes
when thermistor reaches 36°F (2.2°C) (5.8kΩ) for 10 sec. then, energizes for the
remainder of the freeze cycle.
a) Freeze Cycle Diagnosis: Conrm Comp and PM continue. Conrm that FM and LLV
energize. Conrm HGV and X10 relay de-energize. During the rst 5 min. of freeze,
conrm evaporator is cooling. If not, conrm WV de-energized (not leaking by),
HGV de-energized (not bypassing), LLV and FM energize, TXV operates correctly,
Comp is efficient, and refrigerant charge is correct. See "VIII.A. Specication and
Performance Data."
b) Comp Diagnosis: If Comp de-energizes once freeze begins, check that appliance
has not shut off on HPS ("POWER OK" LED off). If so, check "3)b) HPS Diagnosis"
above. If"POWER OK" LED is on, check for 115VAC at CB K1 #1 (V) or #9 (V) to
neutral (W). If 115VAC is not present and LED 1 is on, replace CB.
Comp: If 115VAC is present, check for 115VAC at CR coil. If 115VAC is present,
check CR coil and contact continuity. Replace as needed. If CR is okay, check Comp
start relay and start and run capacitors. Next, check Comp motor winding continuity.
If Comp is energized but evaporator is not cooling, check for an inefficient Comp.
See "VIII.A. Specication and Performance Data.
c) WV and HGV Diagnosis: If WV is energized, check for 115VAC at CB K1 #6 (O) to
neutral (W). If 115VAC is present after PM energizes in harvest cycle, replace CB.
If115VAC is not present, replace WV (bypassing). If HGV did not close at the end of
harvest, check for 115VAC at CB K1 #2 (P) to neutral (W). If 115VAC is present and
LED 3 is off, replace CB. If 115VAC is not present, replace HGV (bypassing).
d) PM Diagnosis: Conrm water is owing over evaporator from PM and not WV. If PM
de-energizes once freeze begins, check for 115VAC at CB K1 #4 (R) to neutral (W).
If 115VAC is not present, replace CB. If 115VAC is present and PM is de-energized,
check for 115VAC at control switch #5 (R) to neutral (W). If 115VAC is present at CB
K1 #4 (R) and not at control switch #5 (R), check control switch continuity between
#5 (R) and #4 (R). Replace as needed. If 115VAC is present at control switch #5 (R)
to neutral (W), check PM capacitor and motor winding continuity.